• Title/Summary/Keyword: inactivation rate

Search Result 174, Processing Time 0.024 seconds

Application of the H Infinity Control Principle to the Sodium Ion Selective Gating Channel on Biological Excitable Membranes

  • Hirayama, Hirohumi
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-38
    • /
    • 2004
  • We proposed the infinity control principle to evaluate the Biological function. The H infinity control was applied to the Sodium (Na) ion selective gating channel on the excitable cellular membrane of the neural system. The channel opening, closing and inactivation processes were expressed by movements of three gates and one inactivation blocking particle in the channel pore. The rate constants of the channel state transition were set to be voltage dependent. The temporal changes in amounts per unit membrane area of the channel states were expressed by means of eight differential equations. The biochemical mimetic used to complete the Na ion selective channel was regarded as noise. The control inputs for ejecting the blocking particle with plugging in the channel pore were set for the active transition from inactivated states to a closed or open state. By applying the H infinity control, we computed temporal changes in the channel states, observers, control inputs and the worst case noises. The present paper will be available for evaluating the noise filtering function of the biological signal transmission system.

Studies on the active site of the Arabidopsis thaliana S-Adenosylmethionine Decarboxylase: $Lys^{81}$ residue involvement in catalytic activity

  • Park, Sung-Joon;Cho, Young-Dong
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.69-74
    • /
    • 2000
  • The Arabidopsis thaliana S-Adenosylmethionine decarboxylase (AdoMetDC) cDNA ($GenBank^{TM}$ U63633) was cloned, then the AdoMetDC protein was expressed and purified. The purified AdoMetDC was inactivated by salicylaldehyde in a pseudo first- order kinetics. The secondorder rate constant for inactivation was 126 $M^{-1}min^{-1}$ with the slope of n=0.73, suggesting that inactivation is the result of the reaction of one lysine residue in the active site of AdoMetDC. Site-specific mutagenesis was performed on the AdoMetDC to introduce mutations in conserved $lysine^{81}$ residues. These were chosen by examination of the conserved sequence and proved to be involved in enzymatic activity by chemical modification. Changing $Lys^{81}$ to alanine showed an altered optimal pH. The substrate also provided protection against inactivation by salicylaldehyde. Considering these results, we suggest that the $lysine^{81}$ residue may be involved in catalytic activity.

  • PDF

Inactivation of Zooplankton Artemia sp. Using Plasma Process (플라즈마 공정을 이용한 동물성 플랑크톤 Artemia sp. 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.

Site-speci fic Inactivation o meso-Diaminopimelate-dehydrogenase Gene (ddh) in a Lysine-producing Brevibacterium lactofementum. (Brevibacterium lactofermentum 에서 meso-Diaminopimelate-dehydrogenase Gene (ddh)의 Site-specific Inactivation)

  • 김옥미;박선희;이갑랑
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 1998
  • Brevibacterium lactofermentum, a gram-positive bacteria, has both the diaminopimelate (DAP) pathway and meso-DAP-dehydrogenase (DDH) pathway for L-lysine biosynthesis. To investigate importance of DDH pathway and the related ddh gene in lysine production, we introduced site-specific mutagenesis technique. A 300 bp DNA fragment central to the meso-DAP-dehydrogenase gene (ddh) of B. lactofermentum was used to inactive chromosomal ddh gene via homologous recombination. Southern hybridization analysis confirmed that the chromosomal ddh gene was disrupted by the vector sequence. The B. lactofementum ddh mutant obtained have an inactive DDH pathway. The results reveal that inactivation of the ddh gene in B. lactofermentum leads to dramatic reduction of lysine production as well as decrease of the growth rate, indicating that the DDH pathway is essential for high-level lysine production as well as biosynthesis of meso-DAP.

  • PDF

Inactivation of various bacteriophages by different ultraviolet technologies: Development of a reliable virus indicator system for water reuse

  • Bae, Kyung Seon;Shin, Gwy-Am
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.350-354
    • /
    • 2016
  • There is an urgent need to identify more reliable indicator systems for human pathogenic viruses in water reuse practice. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to different ultraviolet (UV) technologies in real wastewater in order to identify more reliable bacteriophage indicator systems for UV disinfection in wastewater. Bacteriophage ${\varphi}X174$ PRD1, and MS2 in two different real wastewaters were irradiated with several doses of both low pressure (LP) and medium pressure (MP) UV irradiation through bench-scale UV collimated apparatus. The inactivation rate of ${\varphi}X174$ by both LP and MP UV was rapid and reached ${\sim}4{\log}_{10}$ within a UV dose of $20mJ/cm^2$. However, the inactivation rates of bacteriophage PRD1 and MS2 were much slower than the one for ${\varphi}X174$ and only ${\sim}1{\log}_{10}$ inactivation was achieved by the same UV dose of $20mJ/cm^2$. Overall, the results of this study suggest that bacteriophage MS2 could be a reliable indicator for human pathogenic viruses for both LP and MP UV disinfection in wastewater treatment processes and water reuse practice.

An Active Site Arginine Residue in Tobacco Acetolactate Synthase

  • Kim, Sung-Ho;Park, En-Joung;Yoon, Sung-Sook;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1799-1804
    • /
    • 2003
  • Acetolatate synthase(ALS) catalyzes the first common step in the biosynthesis of valine, leucine, isoleucine in plants and microorganisms. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. To elucidate the roles of arginine residues in tobacco ALS, chemical modification and site-directed mutagenesis were performed. Recombinant tobacco ALS was expressed in E. coli and purified to homogeneity. The ALS was inactivated by arginine specific reagents, phenylglyoxal and 2,3-butanedione. The rate of inactivation was a function of the concentration of modifier. The inactivation by butanedione was enhanced by borate, and the inactivation was reversible on removal of excess butanedione and borate. The substrate pyruvate and competitive inhibitors fluoropyruvate and phenylpyruvate protected the enzyme against inactivation by both modifiers. The mutation of well-conserved Arg198 of the ALS by Gln abolished the enzymatic activity as well as the binding affinity for cofactor FAD. However, the mutation of R198K did not affect significantly the binding of FAD to the enzyme. Taken together, the results imply that Arg198 is essential for the catalytic activity of the ALS and involved in the binding of FAD, and that the positive charge of the Arg is crucial for the interaction with negatively charged FAD.

Inactivation of Brain GABA transaminase by p$^1$, p$^2$-Bis(5′-pyridoxal) diphosphate

  • Jang, S.H.;Lee, B.R.;J.W. Hong;Park, K.W.;Yoo, B.K.;Cho, S.W.;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.74-74
    • /
    • 1995
  • GABA transaminase is inactivated by preincubation with p$^1$, p$^2$-bis(5'-pyridoxal) diphosphate at pH 7.0. The inactivation under pseudo-first order conditions proceeds at a slow rate (K$\_$obs/=0.035 min$\^$-1/). The degree of labeling of the enzyme by p$^1$, p$^2$-bis(5'-pyridoxal) diphosphate was determined by absorption spectroscopy, The blocking of 2 lysyl residues/dimer is needed for inactivation of the transaminase. The time course of the reaction is significantly affected by the substrate ${\alpha}$-ketoglutarate, which afforded complete protection against the loss of the catalytic activity. Whereas cofator pyridoxal phosphate failed to prevent the inactivation of the enzyme. Therefore, it is postulated that binding of ${\alpha}$-ketoglutarate tn lysyl residues is the major factor contributing to stabilization of the catalytic site and bifuctional reagent p$^1$, p$^2$bis(5'-pyridoxal) diphosphate blocks lysyl residues other than those involved in the binding of the cofactor.

  • PDF

Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

  • Lee, Gun Joon;Han, Bok Kung;Choi, Hyuk Joon;Kang, Shin Ho;Baick, Seung Chun;Lee, Dong-Un
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.800-806
    • /
    • 2015
  • We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 µs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.

Effect of Particulate Matter on the UV-Disinfection of Virus and Risk Assessment (입자성 물질 농도가 바이러스의 UV-처리와 위해성에 미치는 영향 평가)

  • Shin, Yu-Ri;Yoon, Chun-Gyeong;Rhee, Han-Pil;Lee, Seung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1028-1033
    • /
    • 2010
  • Wastewater reuse for agricultural irrigation needs treatment and control of pathogens to minimize risks to human health and the environment. In order to evaluate the water quality of UV-treated reclaimed water, this study focused on the relationship between micro-pathogens and particulate matters. MS2 was selected as an index organism because it has similar characteristics to human enteric virus and strong resistance to UV disinfection. The turbidity and suspended solid (SS) were selected for test parameters. In this study, it was performed with different UV doses (30 and $60mJ/cm^2$) for estimation of the MS2 inactivation rate using collimated beam batch experiments in the laboratory. The experiment results by turbidity or SS concentration presented that the increased concentration of them lowered MS2 inactivation. At the turbidity (below 4.27 NTU) and SS (below 1.47 mg/L) of the low level range, the inactivation of 60 UV dose is higher than 30 UV dose. However, at the turbidity and SS of the high level, the increasing UV dose did not show apparent increasing the MS2 inactivation. In quantitative microbial risk assessment (QMRA), it can confirm the trend that $P_D$ and turbidity concentrations have positive correlationship at the low concentration, which was also observed in SS. The QMRA can be helpful in communication with public for safe wastewater reuse and be recommended.

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young;Song, Min-Sun;Lee, Byung-Ryong;Jang, Sang-Ho;Lee, Su-Jin;Park, Jin-Seu;Choe, Joon-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.112-117
    • /
    • 1995
  • Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

  • PDF