• Title/Summary/Keyword: inaccessible area

Search Result 53, Processing Time 0.024 seconds

Geometric Corrections of Inaccessible Area Imagery by Employing a Correlative Method

  • Lee, Hong-Shik;Park, Jun-Ku;Lim, Sam-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.67-74
    • /
    • 2002
  • The geometriccorrection of a satellite imagery is performed by making a systematic correction with satellite ephemerides and attitude angles followed by employing the Ground Control Points (GCSs) or Digital Elevation Models (DEMs). In a remote area or an inaccessible area, however, GCPs are unavailable to be surveyed and thus they can be obtained only by reading maps, which are not accurate in reality. In this study, we performed the systematic correction process to the inaccessible area and the precise geometric correction process to the adjacent accessible area by using GCPs. Then we analyzed the correlation between the two geo-referenced Korea Multiurpose Satellite (KOMPSAT-1 EOC) images. A new geometrical correction for the inaccessible area imagery is achieved by applying the correlation to the inaccessibleimagery. By employing this new method, the accuracy of the inaccessible area imagery is significantly improved absolutely and relatively.

  • PDF

Assessment of Relative Accuracy for Inaccessible Area Imagery Using Biased Ground Control Points (편향된 지상기준점을 이용한 비접근지역 영상좌표의 상대정확도 향상연구)

  • 권현우;조성준;임삼성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.165-170
    • /
    • 2002
  • For the inaccessible area where the field verification is unable, it is difficult to obtain the ground control points (GCPs) or the acquired GCPs may be inaccurate. In general systematic geometric correction is achieved by utilizing orbit ephemeris and three axis attitude data of the satellite. however, this method results to poor accuracy of the imagery's absolute coordinates. To improve the absolute accuracy as well as the relative accuracy, we added the accessible region into the inaccessible area. We obtained GCPs in the accessible region by the fast static GPS survey and made geometric corrections with these biased GCPs. Because the biased GCPs show a pattern of coordinate errors, we analyzed this tendency to track the estimated errors in the inaccessible area.

Study on the Image Information Analysis for Inaccessible Area (비접근 지역에 대한 영상정보 분석 연구)

  • 함영국;김영환;신석철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.343-348
    • /
    • 1998
  • In this study, we extracted several terrain information using satellite and aerial images. We detected change of terrain using Landsat Thematic Mapper(TM) and aerial images which are multitemporal data. In change detection processing, we first classified satellite images by ISODATA algorithm which is an unsupervised learning algorithm, then performed change detection. By this method, we could obtain good result. Also we introduce sub-pixel concept to classify road and agriculture area in inaccessible area. In summary, in chang detection processing, we can find that the used method is efficient.

  • PDF

A Study on Modeling of SPOT Satellite for Inaccessible Area (비접근 지역의 SPOT 위성 모델링에 관한 연구)

  • 김정기;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.29-37
    • /
    • 1993
  • The purpose of this paper is to estimate the attitude and the position of SPOT satellite which are needed in producing DEM(Digital Elevation Model) using SPOT satellite image pairs. DEM extraction is consists of three parts. First part is the modeling of satellite position and atitude, second part is the matching of two images to find corresponding point of them and third part is to calculate the elevation of each point by using the result of the first and second part. For modeling inaccessible area, extended modeling algorithm which removes the GCP(Ground Control Point) most errorneous from the GCPs extracted from map iteratively is proposed According to the experiments using a collinearity equation, the second order polynomials are shown to the optimal for .omega.(pitch), and Zs parameters while the first order ones for .kappa.(yaw) .PHI.(roll), Xs, and Ys parameters. The input images used in this paper are 6000*6000 level 1A panchromatic digital SPOT images of Chungchong-do, Korea. With 30 GCPs, experiments on SPOT images show that the planimetric and altimetric RMS errors are 7.11m and 7.10m, respectively, for test points.

  • PDF

Optimum Design of Packaged Skid for Oil & Gas Plant

  • Choi, Hwang-Keun;Shin, H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.269-272
    • /
    • 2006
  • The use of packaged skid in oil and gas plant has increased dramatically over the decades, replacing loose supply equipment. Most equipment is installed on structural skid in manufacturer's shop. As Oil and Gas Plants are constructed at inaccessible area, the demands of packaged skids are increased. The packaged skid have advantages comparing to loose supply equipment in inaccessible area. The packaged skid is small complex plant consists of process, mechanical, piping, instrument, electrical and structural steel. This paper examines advantages and problems of packaged skid, based on previous experience. EPC company consider key factors such as manufacturing period, construction periods, equipment quality and costs.

  • PDF

Simulator for Management of Tracking Information of Digital Content (콘텐츠추적정보 관리 시뮬레이터)

  • Lee, Seung-Won;Choi, Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.6
    • /
    • pp.48-55
    • /
    • 2012
  • The number of digital content used in mobile devices such as smartphones or tablet PCs has been rapidly increasing along with the development of IT industry. At the same time, studies on digital content management are actively conducted. One of the previous studies defined CTI(Content Tracking Information) for efficient management of the information on digital content usage between mobile devices in an area in which the internet is inaccessible, and suggested ways to deal with CTI management, reduction of the overhead and a technique of collecting as many CTIs as possible within a short time. This paper presents the design and implementation of a simulator capable of verifying the logic and the performance of the CTI management method. This tool simulates a mobile environment where devices move around in the internet inaccessible area and propagates digital contents each other. It shows several advantages including the efficient synchronization of CTI management and overhead reduction.

THE LAND COVER MAPPING IN NORTH KOREA USING MODIS IMAGE;THE CLASSIFICATION ACCURACY ENHANCEMENT FOR INACCESSIBLE AREA USING GOOGLE EARTH

  • Cha, Su-Young;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.341-344
    • /
    • 2007
  • A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.

  • PDF

A Study for Flaw Detection of 3/4″ Pipe by Using Guided Wave (유도초음파를 이용한 3/4″ 배관 결함 검출 연구)

  • Chung, Woo Geun;Kim, Jin-Hoi;Cheon, Keun Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • Unlike the welded pipes in the primary system of light water nuclear power plants being periodically inspected with in-Service inspection program, relatively small pipes with the outer diameter less than 2 inch have not been regularly inspected to date. However, after several failure reports on the occurrence of critical crack-like defects in small pipes, inspection for the small pipes has been more demanded because it could cause the provisional outage of nuclear power plants. Nevertheless, there's no particular method to examine the small pipes having access limitations for inspection due to various reasons; inaccessible area, excessive radiation exposure, hazardous surrounding, and etc. This study is to develop a reliable inspection technique using torsional and flexural modes of guided wave to detect defects that could occur in inaccessible area. The attribute of guided wave that can travel a long distance enables to inspect even isolated range of the pipe from accessible location. This paper presents a case study of the evaluation test on 3/4" small-bore pipes with guide wave method. The test result demonstrates the crack signal behavior and assures possibility to detect the crack signal in a flexural mode, which is clearly distinguishable from the symmetric structure signal in a torsional mode.

A New Algorithm to Calculate the Optimal Inclination Angle for Filling of Plunge-milling

  • Tawfik, Hamdy
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.193-198
    • /
    • 2006
  • Plunge milling is the fastest way to mill away large volumes of metal in the axial direction. The residual volume (inaccessible volume by the plungers) is minimized when selecting a specific direction of filling. This direction is known as the optimal inclination angle for filling of the plunged area. This paper proposes a new algorithm to calculate the optimal inclination angle of filling and to fill the plunged area with multi-plungers sizes. The proposed algorithm uses the geometry of the 2D area of the shape that being cutting to estimate the optimal inclination angle of filling. It is found that, the optimal inclination angle for filling of the plunged area is the same direction as the longer width of the equivalent convex polygon of the boundary contour. The results of the tested examples show that, the residual volume is minimized when comparing the proposed algorithm with the previous method.