• Title/Summary/Keyword: in-soil calibration

Search Result 344, Processing Time 0.03 seconds

Development of a Soil Hardness Meter with Strain Gages (스트레인 게이지를 이용(利用)한 토양(土壤) 경도계(硬度計)의 개발(開發) (I))

  • Kim, Tae Han;Lee, Ki Myung;Jang, Ik Joo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.1
    • /
    • pp.95-100
    • /
    • 1983
  • A soil hardness meter with strain gages was developed in order to measure the hardness of the soil. Soil hardness tests were conducted at the laboratory based on this measuring system. Also, these results were compard with that from the cone penetrometer which is widely used for this purpose. The following conclusions were drawn from the results. 1. Since the correlation coefficient of calibration curve obtained from the soil hardness meter with strain gages was 0.99876 and that of calibration curve obtained from the cone penetrometer with dial gage was 0.97150, the soil hardness meter with strain gages was more recomendable than that with dial gage for this purpose. 2. Standard deviations of soil hardness for sands and soil of paddy field when the soil hardness meter with strain gages was used were 6.794 and 8.271, respectively and that of soil hardness for sands and soil of paddy field when the cone penetrometer with dial gage was used were 7.490 and 9.169, respectively. Thus, the soil hardness meter with strain gages seemed to have lower measuring error than with dial gage.

  • PDF

Evaluation of Sand-Cone Method for Determination of Density of Soil (모래 치환법을 이용한 흙의 밀도 시험에 관한 고찰)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.23-29
    • /
    • 2009
  • A sand-cone method is commonly used to determine the density of the compacted soils. This method uses a calibration container to determine the bulk-density of the sand for use in the test. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to fall approximately the same height as a test hole in the field. However, in most cases the size or shape of test hole is not exactly the same as the calibration container. There is certain discrepancy between sand particle settlement or arrangement in the laboratory calibration and in the field testing, which may cause an erroneous determination of in-situ density. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. The sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field.

  • PDF

Estimation of Sediment Delivery Ratio in Upper Geum River Basin Using Watershed Model (유역모형을 이용한 금강상류 유역의 유사이송율 산정)

  • Kim, Tae Geun;Kim, Min Joo
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.695-703
    • /
    • 2013
  • Soil erosion and sediment delivery ratio(SDR) were estimated by using HSPF model in 3 tributaries of upper stream of Geum river-basin. Meteorological data and other input data were constructed from 2006 to 2011 year by the HSPF model. Flow and suspended solid results were relatively matched with the measurement data through the calibration and validation of the model. Soil erosion was proportional to the amount of rainfall and the area of watershed based on the results of model calibration and validation. SDR in Moojunamdea stream was the highest and one in Cho stream was the lowest. This was effected by the geographical characteristic. SDR was 17.6% Moojunamdea stream, 9.1% Cho stream and 13.2 % Bocheong stream. As the SDR was effected by watershed area and shape factor in this study area.

Study on Cone Penetration Rate and Anisotropy in Cohesive Soils (점성토에 있어서 지반의 비등방성을 고려한 콘 관입속도에 관한 연구)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.559-566
    • /
    • 2000
  • 본 연구에서는 비등방성 응력조건 하에서 콘 관입속도가 콘 관입시험 결과에 미치는 영향을 연구하기 위하여 유한요소해석 및 Calibration Chamber를 이용한 Miniature Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 비등방성을 고려하기 위하여 Anisotropic Soil Model이 유한요소해석에 이용되었으며 LSU/CALCHAS(Louisiana State University Calibration Chamber System)가 Miniature Piezocone의 관입시험에 이용되었다. 콘 관입속도의 영향이외에도 OCR 및 필터위치의 영향을 고찰하였다.

  • PDF

Precision Measurement of Water Content in Soil Using Dual RF Impedance Changes (고주파의 2개 주파수 임피던스 변화를 이용한 토양내 수분함량 정밀측정)

  • 김기복;김상천;주대성;윤동진
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2003
  • This study was conducted to develop a precision measurement method of water content in soil (find sand and silty sand) using dual RF impedance changes. The electrically stable perpendicular plate capacitive sensor was fabricated and utilized to sense the water content in soil. Crystal oscillators of 5 and 20 MHz and related circuits were designed to detect the capacitance changes of a perpendicular plate capacitive sensor with soil samples at various volumetric water contents. A multiple regression model for volumetric water content having dual oscillation frequency changes at 5 and 20 MHz as independent variables resulted in coefficient of determination of 0.963 and standard error calibration of 0.030 cm$^3$/cm$^3$ for calibration and coefficient of determination of 0.966, standard error of prediction of 0.027 cm$^3$/cm$^3$ and bias of 0.001 cm$^3$/cm$^3$ for prediction.

Direct Determination of Soil Nitrate Using Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) (중적외선 분광학을 이용한 토양 내의 질산태 질소 정량분석)

  • Choe, Eunyoung;Kim, Kyoung-Woong;Hong, Suk Young;Kim, Ju-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.267-272
    • /
    • 2008
  • Mid-infrared (MIR) spectroscopy, particularly Fourier transform infrared spectroscopy (FTIR), has emerged as an important analytical tool in quantification as well as identification of multi-atomic inorganic ions such as nitrate. In the present study, the possibility of quantifying soil nitrate via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) without change of a sample phase or with least treated samples was examined. Four types of soils were spectrally characterized in terms of unique bands of soil contents and interferences with nitrate bands in the range of $2000-1000cm^{-1}$. In order to reduce the effects of soil composition on calibration model for nitrate, spectra transformed to the 1st order derivatives were used in the partial least squared regression (PLSR) model and the classification procedure associated with input soil types was involved in calibration system. PLSR calibration models for each soil type provided better performance results ($R^2$>0.95, RPD>6.0) than the model considering just one type of soil as a standard.

Evaluation of OCR in Fine Grained Soil by Piezocone Tests (피에조콘 관입 시험에 의한 OCR 평가)

  • Lim, Beyong-Seock
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.561-568
    • /
    • 2000
  • 본 연구의 목적은 Piezocone 관입시험을 이용한 연약지반의 OCR 평가에 있어 기존의 여러 가지 해석방법들과 최근에 새롭게 제안된 방법들을 실내 모형토조에서 실측된 피에조콘 관입 실험치에 적용하여 각 해석방법들의 차이와 장단점들을 비교 분석하는데 있다. 본 연구의 연구실험방법으로는, Piezocone 관입을 위한 연약 모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Free Stress 상태의 Slurry를 45일간 압밀시킨후 Automatic Computer Control Calibration Chamber (LSU/CALCHAS; Louisiana Slate University Calibration Chamber System)에 옮긴후 다시한번 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 모형지반은 여러 가지 Boundary Condition들과 Stress Condition 그리고 Stress History등을 달리하여 총 5개의 지반을 조성하였다. 관입시험은 총 25개의 Piezocone 관입이 수행되어졌고, 그중 4개는 Standard 10 cm2 Piezocone이고, 나머지 21개는 Miniature Piezocone이 사용되었다. Piezocone 실험치들에 대한 여러 가지 OCR 해석방법 적용결과, Schmertmann방법은 5개 모형지반 모두에서 과다한 OCR평가를 보였으며, $B_{q}$ 방법은 일부모형지반에서 음의 OCR값으로 계산되어졌다. 그러나, Critical-Stale Soil Mechanics 와 Cavity Expansion 이론에 근거하여 Mayne(1991), Kurup(1993), Tumay et al (1995) 들이 제안한 OCR 평가방법들은 실험치와 잘맞는 경향을 보여주었다. 이와같은 이론 모델값들의 차이는 응력조건(Stress Condition)과 경계조건(Boundary Condition)들에 대한 각 해석방법들의 고려정도에 따른 결과로 판단된다.

  • PDF

A Study on Calibration of Neutron Moisture Gauge Using MCNP4A (MCNP4A 전산코드를 이용한 중성자 수분함량 측정기의 교정식 및 교정상수 도출방법 연구)

  • Whang, Joo-Ho;Lim, Chun-Il;Song, Jung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.289-298
    • /
    • 1997
  • Time-consuming experiments have been required in the development of neutron moisture gauge to induce a relation between the water content in soil and the neutron counts. Applying a monte carlo computer code to simulate the experiments of neutron moisture gauging may contribute to reduce time and efforts for experiments and produce a calibration equation which is more applicable to soil in general. In this study MCNP4A, a monte carlo computer code, was employed to simulate soil experiments and the simulated results were compared with experimental ones. The comparative study showed that MCNP4A is applicable to simulate the experiments and calibration equation can be obtained through simulations. Effects of dry density changes were also studied.

  • PDF

Nondestructive Determination of Humic Acids in Soils by Near Infrared Reflectance Spectroscopy

  • Seo, Sang-Hyun;Park, Woo-Churl;Cho, Rae-Kwang;Xiaori Han
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • Near-infrared reflectance spectroscopy(NIRS) was used to determine the humic acids in soil samples from the fields of different crops and land-use over Youngnam and Honam regions in Korea. An InfraAlyzer 500 scanning spectrophotometer was obtained near infrared relectance spectra of soil at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of humic acid, fulvic acid and its total contents in soils. The raw spectral data(log 1/R) can be used for estimating humic acid, fulvic acid and its total contents in soil by MLR procedure between the content of a given constituent and the spectral response of several bands. In which the predicted results for fulvic acid is the best in the constituents. The new spectral data are converted from the raw spectra by PLSR method such as the first derivative of each spectrum can also be used to predict humic acid and fulvic acid of the soil samples. A low SEC, SEP and a high coefficient of correlation in the calibration and validation stages enable selection of the best manipulation. But a simple calibration and prediction method for determining humic acid and fulvic acid should be selected under similar accuracy and precision of prediction. NIRS technique may be an effective method for rapid and nondestructive determination for humic acid, fulvic acid and its total contents in soils.

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF