• Title/Summary/Keyword: in-situ testing

Search Result 226, Processing Time 0.038 seconds

Study on Compressive Strength of Field-Cast Concrete (현장타설 콘크리트의 압축강도에 관한 연구)

  • 김상효;배규웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.69-72
    • /
    • 1989
  • It is widely recognized that the strength of reinforced concrete members has characteristics of random variations due to the variability of the mechanical properties of concrete and steel, the dimensional error as well as incorrect placement of reinforcing bars. In those sources of randomness, variations in concrete strength may be the one affecting the strength of R.C. members most. The concrete strength is usually assumed to have large uncertainty due to the variations in many factors, such as material properties, proportions of the concrete mix, methods of mixing, transporting, placing and curing, etc. In this study, the random characteristics inherent in the strength of field-cast concrete have been examined based on the data collected by testing standard cylinders made of field-cast concrete and cured under in-situ condition.

  • PDF

Chromosomal Microarray Testing in 42 Korean Patients with Unexplained Developmental Delay, Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies

  • Lee, Sun Ho;Song, Wung Joo
    • Genomics & Informatics
    • /
    • v.15 no.3
    • /
    • pp.82-86
    • /
    • 2017
  • Chromosomal microarray (CMA) is a high-resolution, high-throughput method of identifying submicroscopic genomic copy number variations (CNVs). CMA has been established as the first-line diagnostic test for individuals with developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), and multiple congenital anomalies (MCAs). CMA analysis was performed in 42 Korean patients who had been diagnosed with unexplained DD, ID, ASDs, and MCAs. Clinically relevant CNVs were discovered in 28 patients. Variants of unknown significance were detected in 13 patients. The diagnostic yield was high (66.7%). CMA is a superior diagnostic tool compared with conventional karyotyping and fluorescent in situ hybridization.

Application of in-situ testing Methods for Bearing Capacity Estimation of Railroad Roadbed (철도 노반의 지지력 평가를 위한 현장 시험법 적용성 연구)

  • Park, Chang-Woo;Choi, Chan-Yong;Lee, Il-Wha;Kim, Dae-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.866-875
    • /
    • 2006
  • The field plate load test a good potential for determining modulus since it measures both plate pressure and settlement. However, because The field plate load test is expensive and takes plenty of time for operation, it is very difficult to figure out the test characteristics of railroad roadbed in detail. For faster and economical operation, the Dynamic Cone Penetrometer(DCP) and the Light Falling Weight Deflectometer(LFWD) have been utilized for estimating the bearing capacity of railroad roadbed. The objective of this study is to determine the relationship between the test(PLT, DCP, LFWD) of the railroad roadbed in Korea. The DCP test and LFWD test for evauluating the strength of railroad roadbed materials produced in Korea are presented in this paper.

  • PDF

Study of Influence Factors for Prediction of Ground Subsidence Risk

  • Park, Jin Young;Jang, Eugene;Ihm, Myeong Hyeok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This Analyzed case study of measuring displacement, implemented laboratory investigation, and in-situ testing in order to interpret ground subsidence risk rating by excavation work. Since geological features of each country are different, it is necessary to objectify or classify quantitatively ground subsidence risk evaluation in accordance with Korean ground character. Induced main factor that could be evaluated and used to predicted ground subsidence risk through literature investigation and analysis study on research trend related to the ground subsidence. Major factors of ground subsidence might be classified by geological features as overburden, boundary surface of ground, soil, rock and water. These factors affect each other differently in accordance with type of ground that's classified soil, rock, or complex. Then rock could be classified including limestone element or not, also in case of the latter it might be classified whether brittle shear zone or not.

Tensile Failure Characterization of Composites for Railway Vehicle (철도차량 복합소재의 인장파괴 특성분석)

  • Kim, Jeong-Guk;Kwon, Sung-Tae;Kim, Jung-Seok;Yoon, Hyuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping (음향방출신호 맵핑을 이용한 풍력 블레이드 손상 검출 기법)

  • Han, Byeong-Hee;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.68-76
    • /
    • 2011
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, a new damage location method has been proposed by using signal mapping algorithm, and an experimental verification is conducted by using small wind turbine blade specimen; a part of 750 kW real blade. The results show that this new signal mapping method has high advantages such as a flexibility for sensor location, improved accuracy, high detectability. The newly proposed method was compared with traditional AE source location method based on arrival time difference.

Development and Fabrication of Heating and Water Sparging Remediation System (HWSRS) for DNAPL-contaminated Groundwater Treatment

  • Lee, Ju-Won;Park, Won-Seok;Gong, Hyo-Young;Lee, Ae-Ri;Kim, Da-Eun;Baek, Seung-Chon;Lee, Jong-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.32-37
    • /
    • 2013
  • The scope of this study was to develop, design, and build an ex-situ remediation system of using the heating and water sparging treatment for the highly volatile DNAPL (Dense Non-Aqueous Phase Liquid) contaminated groundwater, and to conduct pilot testing at the site contaminated with DNAPL. The TCE (Trichloroethylene) removal was at the highest rate of 94.6% with the water sparging at $70^{\circ}C$ in the lab-scale test. The pilot-scale remediation system was developed, designed, and fabricated based on the results of the lab-scale test conducted. During the pilot-scale testing, DNAPL-contaminated groundwater was detained at heat exchanger for the certain period of time for pre-heating through the heat exchanger using the thermal energy supplied from the heater. The heating system supplies thermal energy to the preheated DNAPL-contaminated groundwater directly and its highly volatile TCE, $CCl_4$ (Carbontetrachloride), Chloroform are vaporized, and its vaporized and treated water is return edback to the heat exchanger. In the pilot testing the optimum condition of the HWSRS was when the water temperature at the $40^{\circ}C$ and operated with water sparging concurrently, and its TCE removal rate was 90%. The efficiency of the optimized HWSRS has been confirmed through the long-term performance evaluation process.

Estimation of Undrained Shear Strength for Clays Using Effective Cone Factor (유효콘계수를 이용한 포화점토의 비배수전단강도 평가)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.133-141
    • /
    • 2008
  • In this study, a new method for estimating the undrained shear strength $s_u$ of saturated clays using piezocone penetration test (CPTu) result is proposed. This is to develop more effective CPTu-based $s_u$ estimation method at lower cost with less uncertainty. For this purpose, a marine clay deposit is selected and tested through extensive experimental testing program including both in-situ and fundamental laboratory tests. The proposed method is based on a correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, without introduction of the total overburden stress into the $s_u-q_t$ correlation. As a result, no additional testing procedure for collecting undisturbed soils samples is required, which can reduce overall testing cost. To verify the proposed method, 4 test sites, which consist of a variety of soil conditions, are selected and used for comparison between measured and predicted undrained shear strength. From comparison, it is seen that predicted values of $s_u$ using the proposed method match well those from measured results.

Tensile test of multi-walled carbon nanotube with different growth methods (성장방법이 서로 다른 탄소나노튜브의 인장시험)

  • Jang, Hoon-Sik;Lee, Yun-Hee;Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.200-203
    • /
    • 2007
  • Carbon nanotubes (CNTs) have attracted an increasing attention due to their superior mechanical properties and potential application in industries. The strength of CNT has been predicted or calculated through several simulation techniques but actual experiments on stress-strain behavior are rare due to its dimensional limit, nanoscale positioning/manipulation, and instrumental resolution. We have attempted to observe straining responses of a multi-walled carbon nanotube (MWNT) with different growth methods by performing an in-situ tensile testing in a scanning electron microscope. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator. We also obtained different tensile load of carbon nanotube with different growth methods.

  • PDF

Identification of Multiple Active Forms in Cellulase-xylanase of Aspergillus sp. 8-17 by Active Staining

  • Shin, Pyung-Gyun;Ahn, Jun-Bae;Kim, Chang-Young;Jeong, Won-Hwa;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.49-52
    • /
    • 1998
  • A fungal strain able to produce filter paper activity (FPase) was isolated from soil by testing the ability to hydrolyze using filter paper. The isolated strain was identified as an Aspergilus sp. judging from its morphological and microscopical characteristics. The cellulase-xylanase system of Aspergillus sp. 8-17 was detected in situ after gel electrophoresis in the presence of SDS and showed that each protein pattern had a distinct polypeptide composition. ${\beta}$-1,4-Glucanase, cellobiohydrolase, and xylanase activity profiles differ from protein patterns. The Aspergillus sp. 8-17 hydrolytic enzymes responsible for the hydrolysis of ${\beta}$-glucan, MUC, and xylan have multiple active forms.

  • PDF