• Title/Summary/Keyword: in-situ stresses

Search Result 124, Processing Time 0.022 seconds

Korean Three Dimensional In-situ stresses and Tunnel Analysis Considering These Stresses (한반도 3차원 지중응력과 이를 고려한 터널해석에 대한 연구)

  • 김동갑;박종관;김수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.97-104
    • /
    • 2001
  • The magnitude and the orientation of in-situ stresses contribute to ground displacement and stresses in the field of underground space. This paper investigates in-situ stresses at various depth on the basis of 392 data which were determined by over-coring and hydro-fracturing test methods in the Korea peninsula. The result shows that in-situ stress distribution are more or less non-uniform through the Granite and Gneiss sub-area, and that the K-value in the Volcanic sub-area are below 1 at the deep depth. Also, the result of three dimensional numerical analyses of tunnel shows that the direction and magnitude of displacement around tunnel are much effected by the stress difference between the maximum and the minimum horizontal stress.

  • PDF

Drained cylindrical cavity expansion in K0-consolidated anisotropic soils under biaxial in-situ stresses

  • Cao, Xiaobing;Zhang, Junran;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.493-503
    • /
    • 2022
  • Cavity expansion is a classical problem in the field of solid mechanics with a wide range of applications in geotechnical and petroleum engineering. A drained solution is developed for cylindrical cavity expansion in anisotropic soils under biaxial in-situ stresses using a K0-based anisotropic modified Cam-clay model (K0-AMCC). The problem is formulated by solving differential equations using an auxiliary variable, which provides analytical expressions for the volume and four stress components of the soil around the cylindrical cavity. The solution is validated by comparisons with existing well-developed solutions. The results show that the present solution well captures the cavity expansion responses in anisotropic soils under biaxial in-situ stresses, and removes limiting assumptions that the cylindrical cavity expands under uniform in-situ stress in isotropic soils. The elastic-plastic boundary of the expanding cylindrical cavity in K0-consolidated anisotropic soils under biaxial in-situ stresses is a circle rather than an ellipse in isotropic soils, and the mathematical proof is provided in detail.

A new extended Mohr-Coulomb criterion in the space of three-dimensional stresses on the in-situ rock

  • Mohatsim Mahetaji;Jwngsar Brahma;Rakesh Kumar Vij
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • The three-dimensional failure criterion is essential for maintaining wellbore stability and sand production problem. The convenient factor for a stable wellbore is mud weight and borehole orientation, i.e., mud window design and selection of borehole trajectory. This study proposes a new three-dimensional failure criterion with linear relation of three in-situ principal stresses. The number of failure criteria executed to understand the phenomenon of rock failure under in-situ stresses is the Mohr-Coulomb criterion, Hoek-Brown criterion, Mogi-Coulomb criterion, and many more. A new failure criterion is the extended Mohr-Coulomb failure criterion with the influence of intermediate principal stress (σ2). The influence of intermediate principal stress is considered as a weighting of (σ2) on the mean effective stress. The triaxial compression test data for eleven rock types are taken from the literature for calibration of material constant and validation of failure prediction. The predictions on rock samples using new criteria are the best fit with the triaxial compression test data points. Here, Drucker-Prager and the Mogi-Coulomb criterion are also implemented to predict the failure for eleven different rock types. It has been observed that the Drucker-Prager criterion gave over prediction of rock failure. On the contrary, the Mogi-Coulomb criterion gave an equally good prediction of rock failure as our proposed new 3D failure criterion. Based on the yield surface of a new 3D linear criterion it gave the safest prediction for the failure of the rock. A new linear failure criterion is recommended for the unique solution as a linear relation of the principal stresses rather than the dual solution by the Mogi-Coulomb criterion.

Three Dimensional In-situ Stress Distribution in the Southern Korean Peninsula and Its Application in Tunnel Analysis (한반도 3차원 지중응력의 분포와 이를 고려한 터널해석에 대한 연구)

  • 김동갑;박종관
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • The measurement of in-situ stress is essential to estimate the ground displacement and the stress distribution of a tunnel and an underground structure. In this study, the in-situ stress distribution of the Southern Korean peninsula was re-evaluated by the new 380 in-situ data which were determined by overcoring and hydrofracturing methods, and the three-din erosional numerical analysis of tunnelling was performed. The results of in-situ stress distribution show that the distribution of horizontal stress tends to be more irregular in metamorphosed(gneiss) and granite areas than in sedimentary and volcanic areas. The ratio of horizontal to vertical stresses(K-value) in volcanic area is less than 1 below the depth of 150m. The direction and magnitude of three dimensional in-situ stresses were shown simultaneously in a figure for the first time in Korea. The three-dimensional numerical analysis of tunnelling indicates that the orientation and magnitude of displacement around a tunnel are controlled mainly by the difference between the maximum and minimum horizontal stresses.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Significance of In-Situ Stresses in Stability Analysis of Underground Nuclear Waste Disposal Repository (방사성 폐기물 지하처분장의 안정성 분석에 있어서 암반내 초기응력의 역할과 의미)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.26-31
    • /
    • 2007
  • The 11 nuclear power plants have been taking charge of more than 40% of the total electrical power development in Korea. In addition to the existing nuclear power plants at Gori, Wolsung, Youngkwang, etc., the 12 nuclear power plants are expected to be newly established until 2006. So, the 23 nuclear power plants will produce the electric power as much as more than 50% of the national gross production. However the nuclear power plants are inevitably generating the detrimental atomic wastes. Therefore the disposal techniques for the nuclear wastes should be ensured considering a very high safety factor. According to the basic researches in KAERI, the underground disposal repositories are reported to be most favorable for Korea. The KBS-3 disposal system has been strongly suggested by KAERI and this system has a deep tunnel with several disposal boreholes in tunnel floor. The nuclear wastes, which are sealed tightly in a canister, will be disposed in these boreholes. Considering the disposal tunnel in a great depth, the in-situ stress regimes will affect severely the tunnel stability. Consequently the effect of the in-situ stresses on the disposal tunnel and the role of the in-situ stresses in tunnel stability analysis are examined by the numerical studies.

In-situ stresses ring hole measurement of concrete optimized based on finite element and GBDT algorithm

  • Chen Guo;Zheng Yang;Yanchao Yue;Wenxiao Li;Hantao Wu
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.477-487
    • /
    • 2024
  • The in-situ stresses of concrete are an essential index for assessing the safety performance of concrete structures. Conventional methods for pore pressure release often face challenges in selecting drilling ring parameters, uncontrollable stress release, and unstable detection accuracy. In this paper, the parameters affecting the results of the concrete ring hole stress release method are cross-combined, and finite elements are used to simulate the combined parameters and extract the stress release values to establish a training set. The GridSearchCV function is utilized to determine the optimal hyperparameters. The mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) are used as evaluation indexes to train the gradient boosting decision tree (GBDT) algorithm, and the other three common algorithms are compared. The RMSE of the GBDT algorithm for the test set is 4.499, and the R2 of the GBDT algorithm for the test set is 0.962, which is 9.66% higher than the R2 of the best-performing comparison algorithm. The model generated by the GBDT algorithm can accurately calculate the concrete in-situ stresses based on the drilling ring parameters and the corresponding stress release values and has a high accuracy and generalization ability.

Estimation of in-situ Stresses and the Effect of a Preexisting Inclined Fracture by Hydraulic Fracturing (수압파쇄를 이용한 초기지압측정과 기존경사균열의 영향)

  • 신중호;신희순;최성웅;이희근
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1994
  • The hydraulic fracturing in a field site was performed for the measurement of in-situ stresses. For the estimation of the effect of a preexisting inclined fracture, the test on a preexisting fracture zone was also conducted. From the measurements at three shallow depths, the ratios of max. to min. horizontal stress showed the range of 1.19-1.56 and the K values showed the range of 2.62-3.86. In case of a preexisting fracture with the inclination of 15 degrees, the stresses calculated as upper bound values by considering it. It seemed from this that the inclination less than 15 degrees had small effect on the stress calculation.

  • PDF

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

The Effect of Stress on Borehole Deformability (응력이 공내 변형률에 미치는 영향)

  • 윤건신
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.219-234
    • /
    • 1998
  • Modulus measurements in vertical boreholes under simulated horizontal in-situ stress conditions were performed on laboratory rock specimens. The experimental program was focused on the examination of modulus change with the variation of the orientation, magnitude and ratios of horizontal biaxial stresses. The experiment results show that the modulus increases when the magnitude of the horizontal stresses increases. The modulus measured in the minimum principal direction increased when the ratio between the horizontal principal stresses increased, while the modulus measured in the maximum principal direction decreased when the ratio of the horizontal principal stresses increased. These were caused by the tangential stresses that vary depending upon the magnitude of horizontal stresses, the applied pressure and the orientation of measurement. Also, the measured moduli were determined under tensile stress, compressive stress, or both stresses. Thus, the stress effect on deformation modulus should be considered, not only for the interpretation of the results of borehole deformability measurement, but also for the design of underground gas storage and pressure tunnel, and for the interpretation of tunnel monitoring.

  • PDF