• Title/Summary/Keyword: in-situ compressive strength

Search Result 122, Processing Time 0.025 seconds

Effect of Curing Temperature and Aging on the Mechanical Properties of Concrete (II) -Evaluation of Prediction Models- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(II) -예측 모델식을 중심으로-)

  • 한상훈;김진근;양은익
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.35-42
    • /
    • 2000
  • In paper I, the relationships between compressive strength and splitting tensile strength or modulus of elasticity were proposed. In this paper, new prediction model is investigated from estimating splitting tensile strength and modulus of elasticity with curing temperature and aging without compressive strength. New prediction model is based on the model which was proposed to predict compressive strength, and splitting tensile strength and modulus of elasticity calculated by this model are compared with experimental values of paper I. To evaluate in-situ applicability of the model, strength and modulus of elasticity tested with variable temperatures are estimated by the prediction model. The prediction model reasonably estimates the strength and the modulus of elasticity of type I and V cement concretes tested in paper I and experimental results with variable temperature tested in this paper.

A Study on the Strength Characteristics of Model Ice for Warm-up Time during Model Ice Preparation (모형빙 생성 시 승온 시간에 따른 모형빙의 강도 특성 연구)

  • Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Understanding the strength characteristics of model ice is an important issue for model testing in an ice model basin to estimate the ship performance in ice. In particular, the mechanical properties of the model ice including elastic modulus, flexural strength and compressive strength are key consideration factors. In order to understand the characteristics of the model ice during warm-up phase at KRISO's ice model basin, the strength properties are tested in this study. The infinite plate-bending method, in-situ cantilever beam test and ex-situ uniaxial compressive test are conducted to determine the strength properties of model ice. The strength characteristics of the model ice are then analyzed in terms of the warm-up phase and seasonality. These results could be valuable to quality control of the model ice characteristics in KRISO's ice model basin and to better understand the variations in strength properties during the ice model tests.

Engineering Characteristics of Filling Materials using Lightweight Foamed Concrete (경량콘크리트를 사용한 충전용 재료의 공학적 특성)

  • Do, Jong-Nam;Kang, Hyung-Nam;Seo, Doo-Won;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.519-523
    • /
    • 2009
  • In this study, the base mixing ratio was determinated to estimate the optimal mixing ratio of material with a change of mixing ratio of micro cement, sand, foaming agent, plasticizer by testing the unconfined compressive strength test. The unconfined compressive strength test was performed to grasp a engineering characteristics of with a change of micro cement, bubble. The results of test, the unconfined compressive strength increased with a micro cement's increase and bubble's decrease. In the future, it will be secured that is reliable datas from laboratory of various condition and in-situ tests to develop optimal lightweight foamed concrete.

  • PDF

Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method (국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구)

  • SunWoo, Choon;Ryu, Dong-Woo;Kim, Hyung-Mok;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.205-215
    • /
    • 2011
  • In this study, we analyzed physical properties of granites and their correlation with rock mass classification methods. The granite samples were obtained from field survey, in-situ borehole tests and laboratory tests for a design phase of various roads, railways and other civil engineering works in Korea. Among the measured physical properties, the results of unit weight, compressive strength, tensile strength, seismic velocity, cohesion, friction angle, elastic modulus and deformation modulus were introduced. We also correlated these properties with the compressive strength. The results of different rock classification method of RQD, RMR, and Q-system against the granites in Korea were compared with each other, and the correlation equations were proposed in a more simplified form. We also derived RMR values using the compressive strength as well as the RQD values of in-situ drilled cores, and estimated the deformation modulus of in-situ rock mass in terms of the RMR values.

Basic properties survey report on the rock classification (암반 분류 기초 물성조사)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.3
    • /
    • pp.10-16
    • /
    • 1991
  • On the ground foundation works for Bldg site, Rock classification test can be obtained as follows due to the International Society for Rock Mechanics. 1. In-situ test : Compressive strength, Point load test. 2. In-situ test Schmidt hammer test. Burden test finaly the convinient co-relation table between strength and 5. H, test were carried out for site-engineer, This project is one of contineous works regarding to Burden test from Jack leg drill($\phi{\;}75mm$) use.

  • PDF

Assessment of the Rock Strength using Borehole Acoustic Scanner (초음파 주사검층 방법을 이용한 암반강도 평가에 관한 연구)

  • Lee Kwangbae;Heo Seung;Song Young-Soo;Song Seungyup;Kim Haksoo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.225-233
    • /
    • 2004
  • The purpose of this study is to provide the geo-technical information by assessment of the in-situ rock strength using the reflected wave energy and travel time data acquired by the borehole acoustic scanner. In order to compare and analyze the relationship between the uniaxial compressive strength and the reflected wave energy, the laboratory test and the borehole acoustic scanning were conducted for the set of specimens, such as mortar, concrete, and rock samples which have different rock type. Finally, we verified the applicability of the reflected wave energy acquired by the borehole acoustic scanner to quantitatively estimate the in-situ rock strength.

Side resistance of rock socketed drilled shafts considering in situ rock mass condition (현장조건을 고려한 현장타설말뚝의 단위주면마찰력)

  • Sagong, Myung;Paik, Kyo-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.967-973
    • /
    • 2004
  • Rock socketed drilled shafts transfer significant portion of structural loads at the socketed part. Therefore, a proper design of side and base resistances of a shaft at the socket is a major concern for the geotechnical engineers. In this study, we modified the Hoek-Brown criterion to estimate side resistance of rock socketed drilled shafts. Earlier method to compute side resistance of a shaft is linear or power functions of intact rock masses. However, side resistance is mobilized like shearing which influenced by the mechanical properties of concrete and rock masses, adhesion of rock/concrete interface, roughness of rock socket. Therefore, a single coefficient or power of uniaxial compressive strength of intact rock cannot provide accurate values of side resistance in a wide range of the uniaxial compressive strength. A new approach proposed in this study can consider in situ rock mass condition (frequency or discontinuities, weathering condition), and rock types thus, it has a wider applicability than the earlier models.

  • PDF

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

Relationship between Unconfined Compressive Strength and Shear Wave Velocity of Cemented Sands (고결모래의 일축압축강도와 전단파속도의 상관관계)

  • Park, Sung-Sik;Hwang, Se-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.65-74
    • /
    • 2014
  • Cemented soils have been widely used in road and dam construction, and recently ground improvement of soft soils. The strength of such cemented soils can be tested by using cored sample or laboratory-prepared specimen through unconfined compression or triaxial tests. It takes time to core a sample or prepare a testing specimen in the laboratory. In a certain situation, it is necessary to determine the in-situ strength of cemented soils very quickly and on time. In this study, the relation between unconfined compressive strength and shear wave velocity was investigated for predicting the in-situ strength of cemented soils. A small cemented specimen with 5 cm in diameter and 10 cm in height was prepared by Nakdong river sand and ordinary Portland cement. Its cement ratios were 4, 8, 12, and 16% and air cured for 7, 14, and 28 days. For recycling of resources, a blast furnace slag was also used with sodium hydroxide as an alkaline activator. The shear wave velocity for cemented soils was measured and then unconfined compressive strength test was carried out. As a cement ratio increased, the shear wave velocity and unconfined compressive strength increased due to increased density and denser structure. The relation between unconfined compressive strength and shear wave velocity increased nonlinearly for cemented soils with less than 16% of cement ratio.