• 제목/요약/키워드: in-process measurement

검색결과 4,826건 처리시간 0.037초

탄소강 담금질 공정의 온도 측정방법에 대한 고찰 (A Study on Temperature Measurement for Quenching of Carbon Steel)

  • 김동규;정경환;강성훈;임용택
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2010
  • To achieve desired microstructure and mechanical property of a manufacturing product, heat treatment process is applied as a secondary process after forging. Especially, quenching process is used for improving strength, hardness, and wear resistance since phase transformation occurs owing to rapid heat transfer from the surface of the specimen. In the present paper, a study on surface temperature measurement for water quenching of eutectoid steel was investigated. In order to determine the temperature history in experiments, three different measuring schemes were used by varying installation techniques of K-type thermocouples. Depending on the measured temperature distribution at the surface of the specimen, convective heat transfer coefficients were numerically determined as a function of temperature by the inverse finite element analysis considering the latent heat generation due to phase transformation. Based on the inversely determined convective heat transfer coefficient, temperature, phase, and hardness distributions in the specimen after water quenching were numerically predicted. By comparing the experimental and computational hardness distribution at three different locations in the specimen, the best temperature measuring scheme was determined. This work clearly demonstrates the effect of temperature measurement on the final mechanical property in terms of hardness distribution.

레이저 반사광 분석을 통한 미세 표면 프로파일 추정 알고리즘의 개발 (Development of microscopic surface profile estimation algorithm through reflected laser beam analysis)

  • 서영호;안중환;김화영;김선호
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.64-71
    • /
    • 2005
  • In order to measure surface roughness profile, stylus type equipments are commonly used, but the stylus keeps contact with surface and damages specimens by its tip pressure. Therefore, optics based measurement systems are developed, and light phase interferometer, which is based on light interference phenomenon, is the most noticeable research. However, light interference based measurements require translation mechanisms of nano-meter order in order to generate phase differences or multiple focusing, thus the systems cannot satisfy the industrial need of on-the-machine and in-process measurement to achieve factory automation and productive enhancement. In this research, we focused light reflectance phenomenon rather than the light interference, because reflectance based method do not need translation mechanisms. However, the method cannot direct]y measure surface roughness profile, because reflected light consists of several components and thus it cannot supply surface height information with its original form. In order to overcome the demerit, we newly proposed an image processing based algorithm, which can separate reflected light components and conduct parameterization and reconstruction process with respect to surface height information, and then confirmed the reliability of proposed algorithm by experiment.

프레스 딥 드로잉 가공 시 플랜지부의 마찰진동 측정에 관한 기초연구 (A study on measuring friction vibration in flange area during deep drawing process)

  • 윤재웅
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.8-13
    • /
    • 2023
  • In this study, it was studied whether a new measurement factor "frictional vibration" that occurs due to the material flow of the die and sheet metal in the flange area during deep drawing process, could be measured using an vibration sensor. The blank holder force acting on the flange area during drawing processing acts as a friction force in the opposite direction into which the sheet material flows and causes friction vibration. As the blank holder force increases, the friction force increases, and as the blank holder force decreases, the friction force also decreases. Because of this, friction vibration also increases and decreases in proportion to the size of the blank holder force. According to this theory, whether frictional vibration occurs was measured using a flange simulator and a vibration sensor. The initial pressure was created using a torque wrench, and it was confirmed that the amplitude increased by about 4 times when torque 6 Nm was increased. When the forming velocity was rapidly changed to 300 mm/min, the amplitude increased approximately 4 times. It was confirmed that the amplitude of frictional vibration according to the measurement location was greater the further away from the specimen. It was verified that a new measurement factor "friction vibration" in the flange area can be measured and used for online monitoring.

Comments on Functional Relations in the Parameters of Multivariate Autoregressive Process Observed with Noise

  • Jong Hyup Lee;Dong Wan Shin
    • Communications for Statistical Applications and Methods
    • /
    • 제2권2호
    • /
    • pp.94-100
    • /
    • 1995
  • Vector autoregressive process disturbed by measurement error is a vector autoregressive process with nonlineat parametric restrictions on the parameter. A Newton-Raphson procedure for estimating the parameter which take advantage of the information contained in the restrictions is proposed.

  • PDF

원전 배관의 두께 측정 데이터에 대한 신뢰도 분석 방법 및 적용 (Method and Application for Reliability Analysis of Measurement Data in Nuclear Power Plant)

  • 윤훈;황경모;이효승;문승재
    • Corrosion Science and Technology
    • /
    • 제14권1호
    • /
    • pp.33-39
    • /
    • 2015
  • Pipe wall-thinning by flow-accelerated corrosion and various types of erosion is significant damage in secondary system piping of nuclear power plants(NPPs). All NPPs in Korea have management programs to ensure pipe integrity from degradation mechanisms. Ultrasonic test(UT) is widely used for pipe wall thickness measurement. Numerous UT measurements have been performed during scheduled outages. Wall-thinning rates are determined conservatively according to several evaluation methods developed by Electric Power Research Institute(EPRI). The issue of reliability caused by measurement error should be considered in the process of evaluation. The reliability analysis method was developed for single and multiple measurement data in the previous researches. This paper describes the application results of reliability analysis method to real measurement data during scheduled outage and proved its benefits.

박판 변형률 측정 오차의 보정에 관한 연구 (Study on the Compensation of Strain Measurement Error in Sheet Metals)

  • 차지혜;금영탁
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.594-599
    • /
    • 2004
  • In the sheet metal forming operations, the strain measurement of sheet panel is an essential work which provides the formability information needed in die design, process design, and product inspection. To measure efficiently complex geometry strains, the 3-dimensional automative strain measurement system, which theoretically has a high accuracy but practically has about 3~5% strain error, is often used. For eliminating the strain error resulted in measuring the strains of formed panels using an automated strain measurement system, the position error calibration method is suggested, which computes accurate strains using the grids with accurate nodal coordinates. The accurate nodal coordinates are calculated by adding the nodal coordinates measured by the measurement system and the position error found using the multiple regression method as a function of the main error parameters obtained from the analysis of strain error in a standard cube. For the verification, the strain distributions of square and dome cups obtained from the position error calibration method are compared with those provided by the finite element analysis and ASAME.

윙립 두께 측정용 비접촉식 검사 시스템에 관한 실험적 연구 (Experimental Study on Non-contact Type Inspection System for Wing Rib Thickness Measurement)

  • 이인수;김해지;안명섭
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.104-110
    • /
    • 2014
  • This paper presents a non-contact inspection system for automatically measuring the thickness of an aircraft wing rip product. In order to conduct the inspection of the wing rib thickness automatically, a non-contact laser displacement sensor, end-effector, and a robot were selected for use. The non-contact type inspection system was evaluated by measuring the measurement deviation of the rotation direction of a C-type yoke end-effector and the transfer direction of a V-slim end-effector. In addition, the non-contact inspection system for wing rib thickness measurements was validated through thickness measurements of a web, flange, and stiffener.

선삭가공시 레이저 빔을 이용한 금속의 표면 거칠기 측정에 관한 연구(II) (A Study on the Metallic Surface Roughness Measurement in Turning by Laser Beam(II))

  • 김희남;황재연;이주상;하상용
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 1994
  • A laser-based in-process measurement system for the evaluation of surface roughness In turning Is reported. The proposed measuring system makes it possible to detect the surface roughness not only circumferential path but also along the feed direction even during machining. Also, it permits the real-time measurement of surface roughness In dynamic condition.

  • PDF

인시투 가스 측정이 가능한 경제적 가스 챔버 구현 및 센서 전압에 따른 가스 응답 특성 분석 (Economical Gas Chamber for In-situ Gas Measurement and Analysis of Gas Response Characteristics according to Sensor Voltage)

  • 최연석;이인환
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.1-8
    • /
    • 2019
  • Breath analysis using a portable device is better than the classical breath analysis system in terms of installation and operation. There is an increasing need to develop cost-effective equipment for testing gas sensors from the viewpoint of functionalities that can be applied applicable to portable devices. In the present study, an economical gas chamber for in-situ gas measurement is implemented with a single gas chamber without using expensive gas storage and control equipment; the gas response characteristics are analyzed using the above-described chamber. The main features of the implemented gas chamber are simple injection procedure, improved gas diffusion, easy measurement and cleaning, support for low-power mode measurement function for portable devices, and open source platform. Moreover, an analysis of gas response characteristics based on changes in sensor voltage show that the sensitivity and 90% response time are affected by the sensor voltage. Furthermore, the sensitivity graph has an inflection point in a specific range. The gas sensor applied in this study showed fast response speed and high sensitivity for sensor voltages of 3.0-3.5 V, regardless of the concentration of acetone gas, the target gas used in this study.

Importance of Volumetric Measurement Processes in Oncology Imaging Trials for Screening and Evaluation of Tumors as Per Response Evaluation Criteria in Solid Tumors

  • Vemuri, Ravi Chandra;Jarecha, Rudresh;Hwi, Kim Kah;Gundamaraju, Rohit;MaruthiKanth, Aripaka;Kulkarni, AravindRao;Reddy, Sundeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2375-2378
    • /
    • 2014
  • Cancer, like any disease, is a pathologic biological process. Drugs are designed to interfere with the pathologic process and should therefore also be validated using a functional screening method directed at these processes. Screening for cancers at an appropriate time and also evaluating results is also very important. Volumetric measurement helps in better screening and evaluation of tumors. Volumetry is a process of quantification of the tumors by identification (pre-cancerous or target lesion) and measurement. Volumetric image analysis allows an accurate, precise, sensitive, and medically valuable assessment of tumor response. It also helps in identifying possible outcomes such disease progression (PD) or complete response as per Response Evaluation Criteria in Solid Tumors (RECIST).