• Title/Summary/Keyword: in-plane shear failure

Search Result 146, Processing Time 0.028 seconds

Progressive failure of symmetric laminates under in-plane shear : I-positive shear

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 1998
  • The objective of this present work is to estimate the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, square symmetric laminates under the action in-plane positive (+ve) shear load. Two progressive failure analyses, one using the Hashin criterion and the other using a Tensor polynomial criterion, are used in conjunction with finite element method. First order shear deformation theory along with geometric non-linearity in the von Karman sense have been employed. Variation of failure loads and failure characteristics with five type of lay-ups and three types of boundary conditions has been investigated in detail. It is observed that the maximum difference between failure loads predieted by various criteria depends strongly on the laminate lay-up and the flexural boundary restraint. Laminates with clamped edges are found to be more susceptible to failure due to transverse shear (ensuing from the out of plane bending) and delamination, while those with simply supported edges undergo total collapse at a load slightly higher than the fiber failure load. The investigation on negative (-ve) in-plane shear load is in progress and will be communicated as part-II of the present work.

Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane

  • Mohammadi, M.;Tavakoli, H.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.115-124
    • /
    • 2015
  • Determination of mobilized shear strength parameters (that identify stresses on the failure plane) is required for analyzing the stability by limit equilibrium method. Generalized Hoek-Brown (GHB) and Mohr-Coulomb (MC) failure criteria are usually used for obtaining stresses on the plane of failure. In the present paper, the applicability of these criteria for determining the stresses on failure plane is investigated. The comparison is based on stresses on the real failure plane which are obtained from the Mohr stress circle. To do so, 18 sets of data (consist of principal stresses and angle of failure plane) presented in the literature are used. In addition, the values account for (VAF) and the root mean square error (RMSE) indices were calculated to check the determination performance of the obtained results. Values of VAF and RMSE for the normal stresses on the failure plane evaluated from MC are 49% and 31.5 where for GHB are 55% and 30.5, respectively. Also, for the shear stresses on failure plane, they are 74% and 36 for MC, 76% and 34.5 for GHB. Results show that the obtained stresses and angles of failure plane for each criterion differ from real ones, but GHB results are closer to the empirical results. Also, it is inferred that results are affected by the failure envelope not real failure plane. Therefore, obtained shear strength parameters are not mobilized. Finally, a multivariable regressed relation is presented for determining the stresses on the failure plane.

Estimation of Shear Plane at Failed Landfill Using Field and Laboratory Tests (현장 및 실내실험을 이용한 매립지 전단활동면 추정에 대한 연구)

  • Choi, Hoseong;Kim, Tae-Hyung;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.315-327
    • /
    • 2019
  • Back analysis has been used to evaluate the factor of safety and circular failure plane at the landfill failure site. However, the estimated circular failure plane by back analysis is quite different from what is observed in the field. Thus, this study was conducted to estimate an actual shear failure plane inside the ground which gives a more accurate failure plane. Cone penetration test (CPT), boring test, soft X-ray image scan, density logging, and ultrasonic logging were conducted at the field and laboratory. The result of CPT showed significantly lower cone resistance, pore pressure, and undrained shear strength at a particular part. This part is a possible shear failure plane inside the ground. To validate, the soft X-ray scan images were analyzed and found the disturbed (inclined) bedding plane induced by shear activity at the estimated shear failure plane. Density and ultrasonic logging tests also found a similar result. Thus, the method in this study is possible to estimate the shear failure plane inside the ground.

Progressive failure of symmetric laminates under in-plane shear: Il-Negative shear

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.757-772
    • /
    • 1998
  • The objective of the present work is to estimate the strength and failure characteristics of symmetric thin square laminates under negative shear load. Two progressive failure analyses, one using the Hashin criterion and the other using a Tensor polynomial criterion, are used in conjunction with the finite element method. First-order shear-deformation theory along with geometric nonlinearity in the von Karman sense has been incorporated in the finite element modeling. Failure loads, associated maximum transverse displacements, locations and modes of failure including the onset of delamination are discussed in detail; these are found to be quite different from those for the positive sheer load reported in Part I of this study (Singh et al. 1998).

Estimation to Shear Strength of Basalt using Lade's Three-dimensional Failure Criterion (Lade의 3차원 파괴규준을 이용한 현무암의 전단강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • In this study, a series of triaxial tests to Jeju basalt were carried out and then shear strength parameters of rock were estimated by the Lade's three-dimensional failure criterion. Also, the characteristics of shear strength parameters and failure plane which were estimated by the three-dimensional failure criterion were analyzed and this failure criterion was compared with the Mohr-Coulomb failure criterion. The variables of ${\eta}_1$ and m are derived from the relationship between ($I_1^3/I_3-27$) and ($P_a/I_1$) during the failure period using the Lade's three-dimensional failure criterion. The failure plane size of Tracy-basalt has the largest plane and that of Scoria has the smallest plane among other octahedral planes which is the three-dimensional failure plane. Also, the failure plane of Tracy-basalt is formed as a triangle and that of Scoria is formed as a circle among other octahedral planes. As the result of comparison with the triaxial test results and the Lade's failure envelope and the Mohr-Coulomb failure envelope, the Lade's failure envelope matched up under higher stress, while the Mohr-Coulomb failure envelope matched up under lower stress. Also, the Lade's three-dimensional failure plane is larger than the Mohr-Coulomb three-dimensional failure plane. It means that the shear strength parameters estimated by the Lade's failure criterion is larger than that of the Mohr-Coulomb failure criterion.

  • PDF

Numerical Analysis on Progressive Failure of Plane Slopes (평면 사면의 점진적 파괴에 관한 수치해석)

  • 송원경;권광수
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure (콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

Finite element analyses of the stability of a soil block reinforced by shear pins

  • Ouch, Rithy;Ukritchon, Boonchai;Pipatpongsa, Thirapong;Khosravi, Mohammad Hossein
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.1021-1046
    • /
    • 2017
  • The assessment of slope stability is an essential task in geotechnical engineering. In this paper, a three-dimensional (3D) finite element analysis (FEA) was employed to investigate the performance of different shear pin arrangements to increase the stability of a soil block resting on an inclined plane with a low-interface friction plane. In the numerical models, the soil block was modeled by volume elements with linear elastic perfectly plastic material in a drained condition, while the shear pins were modeled by volume elements with linear elastic material. Interface elements were used along the bedding plane (bedding interface element) and around the shear pins (shear pin interface element) to simulate the soil-structure interaction. Bedding interface elements were used to capture the shear sliding of the soil on the low-interface friction plane while shear pin interface elements were used to model the shear bonding of the soil around the pins. A failure analysis was performed by means of the gravity loading method. The results of the 3D FEA with the numerical models were compared to those with the physical models for all cases. The effects of the number of shear pins, the shear pin locations, the different shear pin arrangements, the thickness and the width of the soil block and the associated failure mechanisms were discussed.

Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear

  • Singh, S.B.;Kumar, Dinesh
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • This paper deals with the buckling and postbuckling responses, and the progressive failure of square laminates of symmetric lay-up with a central rectangular cutout under in-plane shear load. A detailed investigation is made to show the effects of cutout size and cutout aspect ratio on the buckling and postbuckling responses, failure loads and failure characteristics of $(+45/-45/0/90)_{2s}$, $(+45/-45)_{4s}$ and $(0/90)_{4s}$ laminates. The 3-D Tsai-Hill criterion is used to predict the failure of a lamina while the onset of delamination is predicted by the interlaminar failure criterion. In addition, the effects of boundary conditions on buckling loads, failure loads, failure modes, and maximum transverse deflection for a $(+45/-45/0/90)_{2s}$ laminate with and without a square cutout have been presented. It is concluded that because of early onset of delamination at the net section of cutouts before first-ply failure, total strength of the laminate with very small cutouts can not be utilized.