• 제목/요약/키워드: in-plane load function

검색결과 81건 처리시간 0.024초

모우드 III 하중 하에서 경사진 띠모양의 소성역을 가정한 계면균열 모델 (An Interfacial Crack Model with Inclined Strip Plastic Zones under Mode III Load)

  • 박재학;엄윤용
    • 대한기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.243-251
    • /
    • 1989
  • 본 연구에서는 균질재료에 대하여 Vitec, Riedel, Yokobori와 Kamei 등이 사용되었던 모델을 계면균열문제에 도입하였다. 즉, 균열선단에 기울어진 슬립면 (Slip plane)을 가정하고 소성역이 이 슬립면 상에 존재한다고 가정하여 이 모델에 모우드 III의 응력이 작용하는 경우에 대하여 해석하였다.소성여과 균열을 전위 (dislocation)의 연속된 분포로 나타내고 평형조건을 만족하는 전위밀도함수(disl- ocation density function)를 구하였다.이러한 모델의 해석을 통하여 각 재료에서의 의 마찰전단응력의 변화에 따른 소성역의 크기 및 균열선단에서의 상대변위의 변화를 살펴보았다. 또한 이러한 소성역을 가정한 경우의 J-적분과 균열선단에서의 상대 변위와의 관계에 대해서도 살펴보았다.

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

압전재료 내의 균열에 대한 그린함수 (Green's Function of Cracks in Piezoelectric Material)

  • 최성렬
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.967-974
    • /
    • 2007
  • A general form solution is considered for a piezoelectric material containing impermeable cracks subjected to a combined mechanical and in-plane electrical loading. The analysis is based upon the Hilbert problem formulation. Using this solution, typically for a central crack in transverse isotropic piezoelectric material, a closed form solution is obtained, where one concentrated mechanical and electrical load is subjected to the crack surface. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

분말컨넥팅로드 단조의 유한 요소 해석 (Finite Element Analysis of P/M Connecting Rod Forging)

  • 박종진
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.33-41
    • /
    • 1992
  • Sintered P/M connecting rod is forged to increase density and to satisfy dimensional specifications. Flow of the materials is different form that of wrought materials due to pores in the preform. The Mises yield function was modified to. include the first invariant of stress tensor, and the associated flow rule was derived by applying the normality rule to the yield function. Axisymmetric and plane-strain finite element analyes were carried out for the ring and beam portions of the connecting rod, respectively. The flow of the preform and density change of the analysis are presented in this paper. A load-stroke curve was also presented by superimposing analysis results for the ring and beam portions.

  • PDF

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.589-606
    • /
    • 2018
  • The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

Transverse load carrying capacity of sinusoidally corrugated steel web beams with web openings

  • Kiymaz, G.;Coskun, E.;Cosgun, C.;Seckin, E.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.69-85
    • /
    • 2010
  • The present paper presents a study on the behavior and design of corrugated web steel beams with and without web openings. In the literature, the web opening problem in steel beams was dealt with mostly for steel beams with plane web plates and research on the effect of an opening on a corrugated web was found out to be very limited. The present study deals mainly with the effect of web openings on the transverse load carrying capacity of steel beams with sinusoidally corrugated webs. A general purpose finite element program (ABAQUS) was used. Simply supported corrugated web beams of 2 m length and with circular web openings at quarter span points were considered. These points are generally considered to be the optimum locations of web openings for steel beams. Various cases were analyzed including the size of the openings and the corrugation density which is a function of the magnitude and length of the sine wave. Models without web holes were also analyzed and compared with other cases which were all together examined in terms of load-deformation characteristics and ultimate web shear resistance.

Probabilistic assessment on buckling behavior of sandwich panel: - A radial basis function approach

  • Kumar, R.R.;Pandey, K.M.;Dey, S.
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.197-210
    • /
    • 2019
  • Probabilistic buckling behavior of sandwich panel considering random system parameters using a radial basis function (RBF) approach is presented in this paper. The random system properties result in an uncertain response of the sandwich structure. The buckling load of laminated sandwich panel is obtained by employing higher-order-zigzag theory (HOZT) coupled with RBF and probabilistic finite element (FE) model. The in-plane displacement variation of core as well as facesheet is considered to be cubic while transverse displacement is considered to be quadratic within the core and constant in the facesheets. Individual and combined stochasticity in all elemental input parameters (like facesheets thickness, ply-orientation angle, core thickness and properties of material) are considered to know the effect of different degree of stochasticity, ply- orientation angle, boundary conditions, core thickness, number of laminates, and material properties on global response of the structure. In order to achieve the computational efficiency, RBF model is employed as a surrogate to the original finite element model. The stiffness matrix of global response is stored in a single array using skyline technique and simultaneous iteration technique is used to solve the stochastic buckling equations.

Stochastic identification of masonry parameters in 2D finite elements continuum models

  • Giada Bartolini;Anna De Falco;Filippo Landi
    • Coupled systems mechanics
    • /
    • 제12권5호
    • /
    • pp.429-444
    • /
    • 2023
  • The comprehension and structural modeling of masonry constructions is fundamental to safeguard the integrity of built cultural assets and intervene through adequate actions, especially in earthquake-prone regions. Despite the availability of several modeling strategies and modern computing power, modeling masonry remains a great challenge because of still demanding computational efforts, constraints in performing destructive or semi-destructive in-situ tests, and material uncertainties. This paper investigates the shear behavior of masonry walls by applying a plane-stress FE continuum model with the Modified Masonry-like Material (MMLM). Epistemic uncertainty affecting input parameters of the MMLM is considered in a probabilistic framework. After appointing a suitable probability density function to input quantities according to prior engineering knowledge, uncertainties are propagated to outputs relying on gPCE-based surrogate models to considerably speed up the forward problem-solving. The sensitivity of the response to input parameters is evaluated through the computation of Sobol' indices pointing out the parameters more worthy to be further investigated, when dealing with the seismic assessment of masonry buildings. Finally, masonry mechanical properties are calibrated in a probabilistic setting with the Bayesian approach to the inverse problem based on the available measurements obtained from the experimental load-displacement curves provided by shear compression in-situ tests.

Numerical study on thin plates under the combined action of shear and tensile stresses

  • Sathiyaseelan, S.;Baskar, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.867-882
    • /
    • 2012
  • Analytical (Rayleigh-Ritz method) and numerical studies are carried out and buckling interaction curves are developed for simply supported plates of varying aspect ratios ranging from 1 to 5, under the combined action of in-plane shear and tension. A multi-step buckling procedure is employed in the Finite Element (FE) model instead of a regular single step analysis in view of obtaining the buckling load under the combined forces. Both the analytical (classical) and FE studies confirm the delayed shear buckling characteristics of thin plate under the combined action of shear and tension. The interaction curves are found to be linear and are found to vary with plate aspect ratio. The interaction curve developed using Rayleigh-Ritz method is found to deviate in an increasing trend from that of validated FE model as plate aspect ratio is increased beyond value of 1. It is found that the observed deviation is due to the insufficient number of terms that is been considered in the assumed deflection function of Rayleigh-Ritz method and a convergence study is suggested as a solution.

Ant lion optimizer for optimization of finite perforated metallic plate

  • Chaleshtaria, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.667-676
    • /
    • 2019
  • Minimizing the stress concentration around hypotrochoid hole in finite metallic plates under in-plane loading is an important consideration in engineering design. In the analysis of finite metallic plate, the effective factors on stress distribution around holes include curvature radius of the corner of the hole, hole orientation, plate's aspect ratio, and hole size. This paper aims to investigate the impact of these factors on stress analysis of finite metallic plate with central hypotrochoid hole. To obtain the lowest value of stress around a hypotrochoid hole, a swarm intelligence optimization method named ant lion optimizer is used. In this study, with the hypothesis of plane stress circumstances, analytical solution of Muskhelishvili's complex variable method and conformal mapping is employed. The plate is taken into account to be finite, isotropic and linearly elastic. By applying suitable boundary conditions and least square boundary collocation technique, undefined coefficients of stress function are found. The results revealed that by choosing the above-mentioned factor correctly, the lowest value of stress would be obtained around the hole allowing to an increment in load-bearing capacity of the structure.