• Title/Summary/Keyword: in-plane forces

Search Result 322, Processing Time 0.024 seconds

Experimental investigation of multi-layered laminated glass beams under in-plane bending

  • Huang, Xiaokun;Liu, Qiang;Liu, Gang;Zhou, Zhen;Li, Gang
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.781-794
    • /
    • 2016
  • Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

Evaluations of Swaging Process for Rotor Core of Induction Motors (유도전동기 회전자 제작시 압입작업 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.21-26
    • /
    • 2016
  • This study evaluates the magnitudes and distributions of contact tangential forces with the swaging depth of punch acting at the contact surfaces between a rotor core slot and a Cu bar during a sequential rotor core swaging process. The effects of the core slot shape on the magnitudes and distributions of the total contact forces were investigated to improve the productivity of the rotor core swaging process. Parametric elastic-plastic numerical analyses were performed using simplified two-dimensional cyclic symmetric plane strain models to evaluate the contact force distributions at the contact surfaces. The numerical analysis results show that the total contact tangential forces increased by about 55% with the adjacent Cu bar swaging process. The length of the core slot is a dominant factor in the core slot design as result of the increased total contact tangential forces during the swaging process of the rotor core.

MICROSCOPIC OBSERVATION OF DRAPED COMPOSITE MATERIALS : Bias Extension and Biaxial Tests (직물 복합재료의 드레이핑 미소 거동 관찰 : 일방향 편향 인장실험과 이축 인장실험)

  • 장승환
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • This paper aims to correlate the micro-mechanical behaviour of tow geometry with applied in-plane forces during deformation of dry woven carbon-fibre fabric. These in-plane forces lead to differences in tow reorganisation during deformation and so changes in the way in which 'lock-up' occurs. In this paper, deformation of micro-mechanical parameters such as tow interval, crimp angle, change in tow amplitude and wavelength are investigated. To observe the micro-deformation of the fabric structure, appropriate specimens from bias extension and biaxial tests are sectioned and observed under the microscope. It was found that different loading conditions cause geometric deferences in the tow architecture. The variation in deformed tow geometry with shear angle is fitted using a simple parametric model.

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • Ardakani, Fateme Fotouhi;Vatankhah, Ramin;Sharifi, Mojtaba
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.653-663
    • /
    • 2018
  • Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.

Splitting of reinforced concrete panels under concentrated loads

  • Foster, Stephen J.;Rogowsky, David M.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.803-815
    • /
    • 1997
  • It is well understood that concentrated forces applied in the plane of a beam or panel (such as a wall or slab) lead to splitting forces developing within a disturbed region forming beyond the bearing zone. In a linearly elastic material the length of the disturbed region is approximately equal to the depth of the member. In concrete structures, however, the length of the disturbed region is a function of the orthotropic properties of the concrete-steel composite. In the detailing of steel reinforcement within the disturbed regions two limit states must be satisfied; strength and serviceability (in this case the serviceability requirement being acceptable crack widths). If the design requires large redistribution of stresses, the member may perform poorly at service and/or overload. In this paper the results of a plane stress finite element investigation of concentrated loads on reinforced concrete panels are presented. Two cases are examined (i) panels loaded concentrically, and (ii) panels loaded eccentrically. The numerical investigation suggests that the bursting force distribution is substantially different from that calculated using elastic design methods currently used in some codes of practice. The optimum solution for a uniformly reinforced bursting region was found to be with the reinforcement distributed from approximately 0.2 times the effective depth of the member ($0.2D_e$) to between $1.2D_e$ and $1.6D_e$. Strut and tie models based on the finite element analyses are proposed herein.

A Study on the Analysis and Corner Joint Design of Underground R.C Box Structure (지하의 철근콘크리트 박스구조물의 해석 및 우각부 설계에 관한 연구)

  • 오병환;채성태;신호상;김의성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.253-257
    • /
    • 1996
  • A basic assumption in the current design and analysis of reinforced concrete(RC) box structures, which are constructed by the open cut and fill method, is that the displacements and forces are uniform in the longitudinal direction of the structure. The solution may be therefore obtatined from the analysis of a unit wide strip along longitudinal axis. This strip is said to be in a plane strain condition, meaning that the out of plane deformations are vanished. The current design of box structure is carried out by the result of planar frame model for the sake of simplicity. The purpose of this study is to show more rational design method of box culverts considering a rigid zone of corner joints. The current analysis of box structures will be compared with the plane strain analysis as well as 3-d shell model. Reinforcement quantity is also determined to resist the tensile force in corner joints of box structures using strut-tie model which has been developed through the elastic analysis.

  • PDF

A receding contact problem of a layer resting on a half plane

  • Karabulut, Pembe Merve;Adiyaman, Gokhan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • In this paper, a receding contact problem for an elastic layer resting on a half plane is considered. The layer is pressed by two rectangular stamps placed symmetrically. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces is neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which half contact length and contact pressures are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact length and the contact pressures are calculated under various stamp size, stamp position and material properties using both solutions. The analytic results are verified by comparison with finite element results.

A One-dimensional Annular Plate Element for In-plane Vibration Analysis of Full Disks (충만 디스크의 면내 진동 해석을 위한 1차원 환상 평판 요소)

  • Kwak, Dong-Hee;Lim, Jung-Ki;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1338-1346
    • /
    • 2009
  • We present a one-dimensional annular plate element with which the in-plane vibration of full disks can be analyzed efficiently and accurately by using the FEM. Its elementary mass matrix and stiffness matrix are derived, respectively, from the virtual work by effective forces and the virtual strain energy. The static deformation modes obtained from an integration of the differential equilibrium equations of the annular plate are used as interpolation functions of the one-dimensional annular plate element. The in-plane natural vibration characteristics of a 2-step full disk and a uniform full disk are analysed. Its results are compared with the results obtained by utilizing two-dimensional 8-node quadrilateral plane elements and cyclic symmetry of the disk. And also, by comparing with the theoretical results of previous researchers, the efficiency and accuracy of the presented element are verified.

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF