• Title/Summary/Keyword: in-plane forces

Search Result 322, Processing Time 0.026 seconds

Novel Methods for Spatial Position Control of a Plate In the Conductive Plate Conveyance System Using Magnet Wheels (자기차륜을 이용한 전도성 평판 이송 시스템에서 평판 위치 제어를 위한 새로운 방법)

  • Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Two-axial electrodynamic forces generated on a conductive plate by a partially shielded magnet wheel are strongly coupled through the rotational speed of the wheel. To control the spatial position of the plate using magnet wheels, the forces should be handled independently. Thus, three methods are proposed in this paper. First, considering that a relative ratio between two forces is independent of the length of the air-gap from the top of the wheel, it is possible to indirectly control the in-plane position of the plate using only the normal forces. In doing so, the control inputs for in-plane motion are converted into the target positions for out-of-plane motion. Second, the tangential direction of the open area of the shield plate and the rotational speed of the wheel become the new control variables. Third, the absolute magnitude of the open area is varied, instead of rotating the open area. The forces are determined simply by using a linear controller, and the relative ratio between the forces creates a unique wheel speed. The above methods were verified experimentally.

Buckling of Fixedly Supported Orthotropic Plate under In-plane Linearly Distributed Forces (면내 선형분포하중을 받는 고정지지된 직교이방성판의 좌굴)

  • 정재호;채수하;남정훈;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the results of an elastic buckling analysis of orthotropic plate under in-plane linearly distributed forces. The analytical solution for the orthotropic plate whose boundaries were assumed to be simply supported was derived in the previous work. In this study the loaded edges of plate are assumed to be simply supported and other two edges are assumed to be fixed. For the buckling analysis Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under in-plane linearly distributed forces is presented.

  • PDF

A note on buckling and vibration of clamped orthotropic plates under in-plane loads

  • Felix, D.H.;Bambill, D.V.;Rossit, C.A.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.115-123
    • /
    • 2011
  • The present work deals with obtaining the critical buckling load and the natural frequencies of clamped, orthotropic, rectangular thin plates subjected to different linear distributed in-plane forces. An analytical solution is proposed. Using the Ritz method, the dependence between in-plane forces and natural frequencies are estimated for various plate sizes, and some results are compared with finite element solutions and where possible, comparison is made with previously published results. Beam functions are used as admissible functions in the Ritz method.

Analytical solutions for density functionally gradient magneto-electro-elastic cantilever beams

  • Jian, Aimin;Ding, Haojiang
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-188
    • /
    • 2007
  • The general solution for two-dimensional magneto-electro-elastic media in terms of four harmonic displacement functions is proposed analytically. The expressions of specific solutions of magneto-electro-elastic plane problems with specific body forces are derived. Finally, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally gradient media, two kinds of beam problems with body forces depending only on the z or x coordinate are solved by the trial-and-error method.

Out of plane behavior of walls, using rigid block concepts

  • Gh.M, Mohammadi;F, Yasrebi
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.335-350
    • /
    • 2010
  • Out of plane behaviors of walls and infills are investigated in this paper, using rigid block concepts. Walls and infills are sometimes separated from top beams because of in plane movement of the walls and crumbling mortar layers under the top beams. Therefore, sufficient strength should be supplied to hold them against out of plane forces. Such walls are studied here under some real and scaled earthquakes, regarding their out of plane behavior. Influences of some reinforcements, connecting the walls to frames or perpendicular walls, are also studied. It is shown that unreinforced walls of regular sizes (3 m high and 4.5 m long) are normally unstable in the earthquakes. However, performing some reinforced bars that connect them to adjacent elements- frames or perpendicular walls - stabilizes them. Eventually, it is concluded that supplying 3 reinforced bars at 1/4, 2/4 and 3/4 of the panel's height stabilizes the walls in the assumed earthquakes. In this regard, for 20 cm and 35 cm thick walls ${\Phi}$18mm and ${\Phi}$20mm bars are to be used, respectively. For walls with other configurations, the forces and required areas of the reinforcements can be determined by the developed method of this paper.

A Musculoskeletal Model of a Human Lower Extremity and Estimation of Muscle Forces while Rising from a Seated Position (인체 하지부 근골격계 모델 및 의자에서 일어서는 동작 시 근력 예측)

  • Jo, Young-Nam;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.502-508
    • /
    • 2012
  • An analytical model for a human body is important to predict muscle and joint forces. Because it is difficult to estimate muscle or joint forces from a human body, the objective of this study is the development of a reliable analytical model for a human body to evaluate the lower extremity muscle and joint forces. The musculoskeletal system of the human lower extremity is modeled as a multibody system employing the Hill-type muscle model. Muscle forces are determined to minimize energy consumption, and we assume that motion is constrained in the sagittal plane. Muscle forces are calculated through an equilibrium analysis while rising from a seated position. The musculoskeletal model consists of four segments. Each segment is a rigid body and connected by frictionless revolute joints. Muscles of the lower extremity are simplified to seven muscles with those that are not related to the sagittal plane motion are ignored. Muscles that play a similar role are combined together. The results of the present study are compared with experimental results to validate the lower extremity model and the assumptions of the present study.

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

A Study on Out-of-Plane Bending Mechanism of Mooring Chains for Floating Offshore Plants (부유식 해양플랜트 계류 체인의 면외굽힘 거동에 대한 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo;Kang, Chan-Hoe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.580-588
    • /
    • 2010
  • OPB(out-of-plane bending)-induced failure of mooring chain was firstly addressed by CALM (catenary anchor leg mooring)-type offloading buoy, located approximately one mile away from the bow of the Girassol FPSO which was installed offshore area of Angola in September 2001. This study deals with verifying the load transfer mechanism between the first free chain link and connected two chain links inside the chain hawse. OPB moment to angle variation relationships are proposed by extensive parametric study where the used design variables are static friction coefficients, proof test loads, nominal tension forces, chain link diameters, chain link grades and chain link types. The stress ranges due to OPB moments are obtained using nonlinear FEAs (finite element analyses). Final stress ranges are derived considering ones from IPT (in-plane tension) forces. Also a formula for OPB fatigue assessment is briefly introduced.

A CASE REPORT ON TREATMENT OF CLASS II MALOCCLUSION WITH TWIN BLOCKS IN GROWING CHILD (Modified Twin Blocks에 의한 성장기 아동의 II급 부정교합의 치료증례)

  • Yang, Kyu-Ho;Park, Jae-Hong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.21 no.2
    • /
    • pp.577-585
    • /
    • 1994
  • The Twin Blocks technique was developed by Dr. William Clark of Scotland during the early 1980's. Twin Blocks are an uncomplicated system that incorporates the use of upper and lower bite blocks. These blocks reposition the mandible and redirect occlusal forces to achieve rapid correction of malocclusions. They are also comfortable and the patients wear them full-time-inducing eating time. Occlusal forces transmitted through the dentition provide a constant proprioceptive stimulus to influence the rate of growth and the trabecular structure of the supporting bone. The features of Twin Blocks mean easier and quicker treatment. The occlusal inclined plane is the fundamental functional mechanism of the natural dentition. Twin blocks are bite blocks that effectively modify the occlusal inclined plane to induce favorably directed occlusal forces by causing a functional mandibular displacement. Upper and lower bite blocks interlock at a $45^{\circ}$ angle and are designed for full-time wear to take advantage of all functional forces applied to the dentition including the forces of mastication. The patients who were treated with modified Twin Blocks, and following results were observed: 1. Large overjet and deep overbite were corrected. 2. Class II molar relationship was changed into Class I. 3. Labial inclination of upper incisors was corrected by adjustment of labial bow of upper bite block. 4. The profiles of two patients were improved by anterior displacement of mandible.

  • PDF

A constant tendon moment arms finger model in the sagittal plane

  • Lee, K.H.
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.46-53
    • /
    • 1992
  • Finger movements in the sagittal plane mainly consist of flexion and extension about the metacarpophalangeal(MCP) and proximal interphalangeal(PIP) joints. A kinematic finger model was developed with the assumption of constant tendon moment arms. Equations of static equilibrium were derived for the finger model using the principle of virtual work. Equations of static equilibrium for the finger model were indeterminate since only three equations were available for five unknown variables(forces). The number of variables was reduced based on information on muscular activities in finger movements. Then the amounts of forces which muscles exerted to maintain static equilibrium against external loads were computed from the equilibrium equations. The muscular forces were expressed mathematically as functions of finger positions, tendon moment arms, lengths of phalanges, and the magnitude and direction of external load. The external finger strength were computed using the equations of muscular forces and anatomical data. Experiments were performed to measure finger strengths. Measurements were taken in combinations of four finger positions and four directions of force exertions. Validation of the finger models and of procedure to estimate finger strengths was done by comparing the results of computations and experiments. Significang differences were found between the predicted and measured finger strengths. However, the trends of finger strengths with respect to finger positions were similar inboth the predicted and measured. These findings indicate that the finger model and the procedure to predict finger strengths were correctly developed.

  • PDF