• 제목/요약/키워드: in-plane damage

검색결과 257건 처리시간 0.021초

Static and dynamic behaviour of square plates with inhomogeneity subjected to non-uniform edge loading (compression and tension)

  • Prabhakara, D.L.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.163-176
    • /
    • 1996
  • The tension and compression buckling behaviour of a square plate with localized zones of damage and subjected to non-uniform loading is studied using a finite element analysis. The influence of parameters such as position of damage, extent of damage, size of damage and position of load on instability behaviour are discussed. The dynamic behaviour for certain load and damage parameters are also presented. It is observed that the presence of damage has a marked effect on the static buckling load and natural frequency of the plate.

Tomosynthesis Feasibility Study for Visualization of Interiors of Wood Columns Surrounded with Walls

  • LEE, Jun Jae;KIM, Chul-Ki
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권4호
    • /
    • pp.246-255
    • /
    • 2022
  • The need for non-destructive testing and evaluation of Korean traditional wooden buildings is increasing because of their widespread deterioration. Among all types of deterioration, termite damage in wooden columns is the most difficult to detect with the naked eye because it starts inside the wood, and the initial deterioration is small. X-ray computed tomography (CT) is the best technology to investigate the inner state of wood that has less damage, but applying it to wooden columns between walls is challenging. Therefore, the feasibility of tomosynthesis, which is a method to reconstruct a coronal section of a subject with a few X-ray projections from a limited angle of rotation, was studied as an alternative to CT. Pine (P. densiflora) with three artificial holes was prepared as a specimen to evaluate the quality of reconstructed tomosynthesis images according to the different number of projections. The quality of the tomosynthesis images in the in-focus plane was evaluated using the contrast-to-noise ratios, while a vertical resolution between the images was assessed by determining the artificial spread function. The quality of the tomosynthesis image in the in-focus plane increased as the number of projections increased and then remained constant as the number of projections reached 21 or over. In the case of vertical resolution, there was no significant difference when 21 projections or more were used to reconstruct the images. A distinct difference between coronal section images was found when the distance was more than 10 mm from one plane to another plane.

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • 제9권1호
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

A novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges

  • Wen-Qiang Liu;En-Ze Rui;Lei Yuan;Si-Yi Chen;You-Liang Zheng;Yi-Qing Ni
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.393-407
    • /
    • 2023
  • To assess structural condition in a non-destructive manner, computer vision-based structural health monitoring (SHM) has become a focus. Compared to traditional contact-type sensors, the advantages of computer vision-based measurement systems include lower installation costs and broader measurement areas. In this study, we propose a novel computer vision-based vibration measurement and coarse-to-fine damage assessment method for truss bridges. First, a deep learning model FairMOT is introduced to track the regions of interest (ROIs) that include joints to enhance the automation performance compared with traditional target tracking algorithms. To calculate the displacement of the tracked ROIs accurately, a normalized cross-correlation method is adopted to fine-tune the offset, while the Harris corner matching is utilized to correct the vibration displacement errors caused by the non-parallel between the truss plane and the image plane. Then, based on the advantages of the stochastic damage locating vector (SDLV) and Bayesian inference-based stochastic model updating (BI-SMU), they are combined to achieve the coarse-to-fine localization of the truss bridge's damaged elements. Finally, the severity quantification of the damaged components is performed by the BI-SMU. The experiment results show that the proposed method can accurately recognize the vibration displacement and evaluate the structural damage.

Damage Analysis of Reinforced Concrete Columns under Cyclic Loading

  • Lee, Jee-Ho
    • KCI Concrete Journal
    • /
    • 제13권2호
    • /
    • pp.67-74
    • /
    • 2001
  • In this study, a numerical model for the simulation of reinforced concrete columns subject to cyclic loading is presented. The model consists of three separate models representing concrete, reinforcing steel bars and bond-slip between a reinforcing bar and ambient concrete. The concrete model is represented by the plane stress plastic-damage model and quadrilateral finite elements. The nonlinear steel bar model embedded in truss elements is used for longitudinal and transverse reinforcing bars. Bond-slip mechanism between a reinforcing bar and ambient concrete is discretized using connection elements in which the hysteretic bond-slip link model defines the bond stress and slip displacement relation. The three models are connected in finite element mesh to represent a reinforced concrete structure. From the numerical simulation, it is shown that the proposed model effectively and realistically represents the overall cyclic behavior of a reinforced concrete column. The present plastic-damage concrete model is observed to work appropriately with the steel bar and bond-slip link models in representing the complicated localization behavior.

  • PDF

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

Damage assessment of structures from changes in natural frequencies using genetic algorithm

  • Maity, Damodar;Tripathy, Rashmi Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제19권1호
    • /
    • pp.21-42
    • /
    • 2005
  • A method is presented to detect and assess the structural damage from changes in natural frequencies using Genetic Algorithm (GA). Using the natural frequencies of the structure, it is possible to formulate the inverse problem in optimization terms and then to utilize a solution procedure employing GA to assess the damages. The technique has been applied to a cantilever beam and a plane frame, each one with different damage scenario to study the efficiency of the developed algorithm. A laboratory tested data has been used to verify the proposed algorithm. The study indicates the potentiality of the developed code to solve a wide range of inverse identification problems in a systematic way. The outcomes show that this method can detect and estimate the amount of damages with satisfactory precision.

25MW급 산업용 가스터빈의 저널과 베어링 손상 보수사례에 관한 연구 (A Study on Repair Case of Journal and Bearing Damage for 25MW Industrial Gas Turbine)

  • 김병옥;선경호;이안성
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.64-69
    • /
    • 2012
  • This paper deals with the study on repair case of journal shaft and bearing damage in 25MW industrial gas turbine caused by sudden blackout, operation mistake, and logic abnormal, etc. When a serious accident such as journal and bearing damage in a gas turbine occurs, the domestic local companies having the gas turbine are dependent on manufacturer for all maintenance and repair schedule until now. This case study shows that the damaged gas turbine is normally re-operated itself in domestic by establishing repair schedule in a short period of time, repairing damage journal shaft and tilting pad bearings, and performing rotating test for a reliability check. This paper can be regarded as the important case study of emergency test run experience of the refurbished 25MW gas turbine rotor.

Seismic vulnerability assessment of masonry facade walls: development, application and validation of a new scoring method

  • Ferreira, Tiago M.;Vicentea, Romeu;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.541-561
    • /
    • 2014
  • This paper approaches the issue of seismic vulnerability assessment strategies for facade walls of traditional masonry buildings through the development of a methodology and its subsequent application to over 600 building facades from the old building stock of the historic city centre of Coimbra. Using the post-earthquake damage assessment of masonry buildings in L'Aquila, Italy, an analytical function was developed and calibrated to estimate the mean damage grade for masonry facade walls. Having defined the vulnerability function for facade walls, damage scenarios were calculated and subsequently used in the development of an emergency planning tool and in the elaboration of an access route proposal for the case study of the historic city centre of Coimbra. Finally, the methodology was pre-validated through the comparison of a set of results obtained from its application and also resourcing to a widely accepted mechanical method on the description of the out-of-plane behaviour of facade walls.