• Title/Summary/Keyword: in-plane and out-of-plane

Search Result 1,847, Processing Time 0.038 seconds

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies

  • Murigendrappa, S.M.;Maiti, S.K.;Srirangarajan, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.635-658
    • /
    • 2005
  • The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

Long-term monitoring of super-long stay cables on a cable-stayed bridge

  • Shen, Xiang;Ma, Ru-jin;Ge, Chun-xi;Hu, Xiao-hong
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.357-368
    • /
    • 2018
  • For a long cable-stayed bridge, stay cables are its most important load-carrying components. In this paper, long-term monitoring of super-long stay cables of Sutong Bridge is introduced. A comprehensive data analysis procedure is presented, in which time domain and frequency domain based analyses are carried out. In time domain, the vibration data of several long stay cables are firstly analyzed and the standard deviation of the acceleration of stay cables, and its variation with time are obtained, as well as the relationship between in-plane vibration and out-plane vibration. Meanwhile, some vibrations such as wind and rain induced vibration are detected. Through frequency domain analysis, the basic frequencies of the stay cables are identified. Furthermore, the axial forces and their statistical parameters are acquired. To investigate the vibration deflection, an FFT-based decomposition method is used to get the modal deflection. In the end, the relationship between the vibration amplitude of stay cables and the wind speed is investigated based on correlation analysis. Through the adopted procedure, some structural parameters of the stay cables have been derived, which can be used for evaluating the component performance and corresponding management of stay cables.

Effect of Three-dimensional Warping on Stiffness Constants of Closed Section Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.467-473
    • /
    • 2017
  • This paper focuses on the investigation of three-dimensional (3D) warping effect on the stiffness constants of composite beams with closed section profiles. A finite element (FE) cross-sectional analysis is developed based on the Reissner's multifield variational principle. The 3D in-plane and out-of-plane warping displacements, and sectional stresses are approximated as linear functions of generalized sectional stress resultants at the global level and as FE shape functions at the local sectional level. The classical elastic couplings are taken into account which include transverse shear and Poisson deformation effects. A generalized Timoshenko level $6{\times}6$ stiffness matrix is computed for closed section composite beams with and without warping. The effect of neglecting the 3D warping on stiffness constants is shown to be significant indicating large errors as high as 93.3%.

Analysis of Superplastic Forming Processes U sing Finite Element Method (유한요소법을 이용한 초소성 성형공정 해석)

  • 홍성석;김민호;김용환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1411-1421
    • /
    • 1995
  • A rigid visco-plastic finite element method has been developed for modeling superplastic forming processes. The optimum pressure-time relationship for a target strain rate and thickness distributions was predicted using two-node line element based on membrane approximation for plane strain and axisymmetric condition. Analysis of superplastic forming was carried out using the developed program and the numerical results were compared to the values available in the literature for plane strain problems. For description of the contact between the dies and sheet, the direct projection method was applied to the complicated problem and the validity of the scheme was tested. Experiments for the various geometries such as hemisphere and cone were performed with the developed forming machine using the calculated optimum pressure-time curves. Comparison between analysis and experiments showed good agreement.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Influence of interface on the behavior of infilled frame subjected to lateral load using linear analysis

  • Senthil, K.;Satyanarayanan, K.S.
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.127-144
    • /
    • 2016
  • Two dimensional numerical investigations were carried out to study the influence of interface thickness and their pattern on the behavior of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The linear elastic analysis was carried out on one and two bay structural systems as well as the influence of number of stories was studied by varying the number of stories as single, three and five. The cement mortar was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The interface was recognized as one sided, two sided, three sided and four sided and their effect was studied by removing the interface material between the reinforced concrete frame and masonry infill. The effect of lateral loads on infill masonry wall was also studied by varying assumed loads as 10, 20, 30, 40, 50 and 60 kN. The behavior of infilled frames studied has revealed that there is a maximum influence of interface thickness and interface pattern corresponding to 10 mm thickness. In general, the lateral displacement of frame is increased linearly with increase in lateral loads.

A study of sagittal condylar inclination and occlusal plane inclination of two semiadjustablearticulators with different reference plane (기준면이 다른 반조절성 교합기의 전방시상과로각과 교합평면경사각에 대한 연구)

  • Kim, Hyo-Jung;Lee, Sung-Bok;Choi, Dae-Gyun;Bak, Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.420-430
    • /
    • 2008
  • Statement of problem & Purpose: Articulators are very important for education and overall clinical situation in the field of prosthodontics, however preexisting articulators are designed and built based on maxillofacial structures and mean values of mandibular movement of Western people. Purpose of this research is to find out a adequate basis for applicating these articulators, presently used for clinical education, for Korean. Material and methods: 59 Korean adults (41 males, 18 females), aged between 24 to 41, where selected for this study. Two pairs of both maxillary and mandibular models were made for each examinee. These models where attached to both KaVo PROTARevo 7 and Hanau Modular semiadjustable articulators by using facebow transfer, than sagittal condylar inclination, occlusal plane inclination and position of mandibular on the articulator where measured. Result and conclusion: 1. Mean sagittal condylar inclination for KaVo PROTAR semiadjustable articulator was $33.75^{\circ}$(standard deviation $12.46^{\circ}$) meanwhile Hanau Modular semiadjustable articulator showed $40.72^{\circ}$(standard deviation $12.09^{\circ}$) for mean sagittal condylar inclination. 2. Mean occlusal plane inclination for KaVo PROTAR semiadjustable articulator was $-2.76{\circ}$(standard deviation $3.63^{\circ}$) meanwhile Hanau Modular semiadjustable articulator showed $11.87^{\circ}$ (standard deviation $3.63^{\circ}$) for mean occlusal plane inclination. 3. On the average center of the mandibular dentition were in the range of 5 to 7 mm of the central position of the articulator. Both anterior and posterior dentition were positioned at the center of the articulator vernacularly for KaVo PROTAR semiadjustable articulators, meantime for Hanau Modular semiadjustable articulator, anterior dentition was positioned 5 mm downwards and 3mm upwards for posterior dentition from vertically central position of the articulator.

Geometric Geoid Determination in South Korea using GPS/Levelling Data

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.285-289
    • /
    • 1995
  • This paper describes the determination of geoid using height data measured by GPS and Spirit Levelling. The GPS data of the 88 stations were used to determine the geoid undulation (N) which can be easily obtained by subtracting the orthometric height(H) from the ellipsoidal height(h). From the geoid undulation (N) calculated at each station mentioned above, geoid plots with a contour interval of 0.25 m were drawn using two interpolation methods. The following interpolation methods were applied and compared with each other: Minimum Curvature Method and Least Squares Fitted Plane. Comparison between geometric geoid and gravimetric geoid undulation by FFT technique was carried out.

  • PDF