• Title/Summary/Keyword: in-place tests

Search Result 387, Processing Time 0.027 seconds

A Study on the Concrete Breakout Capacity of CIP Anchor Bolts under Shear Loading (전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Choi, Myung-Kuk;Kim, Cheol-Hwan;Kim, In-Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.207-215
    • /
    • 2012
  • The 45-degree cone failure theory has been used in concrete anchor bolts design under shear loading, but the CCD (Concrete Capacity Design) method was adopted as a new design method since 2000. However, the method was allowed only for anchor diameters of less than 50mm because it is based on the experimental results of small size anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-to-large size anchor bolts with large edge distance. In this study, shear tests on M56 cast-in-place single anchor bolt with edge distance of 350mm were performed using four test specimens. Based on the test results and findings of existing studies, a new equation for the breakout capacity of anchor bolts under shear loading with edge distance of up to 750mm was proposed.

A Study on the Concrete Breakout Capacity Evaluation of Medium-to-Large size CIP Anchor Bolts under Tension Loading (인장하중을 받는 중대형급 선설치 앵커볼트의 콘크리트파괴강도 평가를 위한 연구)

  • Park, Yong-Myung;Jeon, Myeong-Hui;Lee, Kun-Jun;Kim, Cheol-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.493-501
    • /
    • 2011
  • The $45^{\circ}$cone failure theory has been used for concrete anchor bolt design, but the CCD (concrete capacity design) method was adopted as a new design method in 2000. The method was allowed to be used, however, only for anchors with a diameter of less than 50 mm and an embedment depth of less than 635 mm because it is based on the experiment results from medium-sized to small anchor bolts. Therefore, it is necessary to develop a rational concrete breakout capacity equation for medium-sized to large anchor bolts. In this study, tension tests on an M56 cast-in-place single anchor bolt with an effective embedment depth of 400-450 mm were carried out for the five test specimens. Based on the test results together with the other recent test results, the applicability of the concrete breakout capacity equation in the current design code to the large to medium-sized anchor bolts with an embedment depth of 280-1,200 mm was estimated.

A Study on Performance Improvement of a PHC-W Pile for PHC-W Retaining Wall (PHC-W 흙막이용 PHC-W말뚝의 성능개선에 관한 연구)

  • Kim, Chae Min;Kim, Sung Su;Jeon, Byeong Han;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • Various earth retaining wall methods were used on the domestic construction sites and a cast in place pile (C.I.P) method was mostly applied at deep excavation. Because of a lot of shortcomings in the C.I.P method, a new method using PHC-W earth retaining wall was developed. The earth retaining wall method using PHC-W piles has a lot of advantages including that it is safer than other earth retaining wall methods due to uniform quality and high rigidity. PHC-W was designed to effectively resist lateral earth pressure by alternating cross section of PHC pile. And increment of bending moment and shear strength were verified through KS F 4306 tests, and were increased by 42% and 98% more than KS standards.

Microbiological Evaluation of Chilled Freshes Raw-fish Manufacturers before and after HACCP System Establishment (싱싱회류 생산업체의 HACCP 시스템 구축 전 후의 미생물학적 평가)

  • 박완희;이성학;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.19 no.2
    • /
    • pp.74-83
    • /
    • 2004
  • Raw-fish food contains a lot of moisture and is a high-protein food. It is a first-stage processed food taking a lot of manual work. Therefore, it is classified as a PHF food, very liable to cause a bacterial food-poisoning. But its manufacturers are usually small-sized and a systematic sanitation management is difficult to expect. But the manufacturer participating in this study produces chilled fresh raw-fish food. Fish are sliced into two fillets, which are packaged under vacuum, kept and distributed in refrigerators, and sold within a day. It is a newly-developed kind of raw-fish food, and a more improved kind of raw-fish food making possible a systematic sanitation management. The HACCP (Hazard Analysis and Critical Control Point) is a systematic and continuous process-control method which is very efficient for controling food sanitation and reducing the expenses. A new HACCP model has been developed to be applied to a large-sized chilled fresh raw-fish food manufacturer. To ascertain its efficiency, the baterial examination was done to its workplace and products. The significance test was done on its data by "SPSS 12.0 for Window" and "Mann-Whitney U Test". The numbers of bacteria on its final products were significantly different in flatfish and porgy. The number of bacteria tended to decrease in each time-differential sampling (P<.00l). The final food products showed no food-poisoning bacteria in all the time-differential tests and in all the samplings, which proves that the CCP of the HACCP system is under control. After the SSOP program was applied, no pathogenic bacteria were found in the work-place, and the kinds and numbers of bacteria decreased. The numbers of general bacteria and colon bacilli also showed a significant difference from those before the SSOP program in the filleting board (P<.05), in the skinning board (P<.0l), in the neck-removing knife (P<.05), and in the filleting knife (P<.01). The working equipments, periodically disinfected, also showed a significant difference in sanitary conditions (in the dehydrator, P<.05). The number of bacteria found on the food-touching surface was within the standard (below 500/l00 cm$^2$) After the SSOP program was applied, the general bacteria and colon bacilli were not found. The quality of water used in the food processing was also within the standard. The numbers of bacteria falling from the air in the work-place were negligible in all the samplings (<30CFU/l000ι). The staphylococci and fungi were not found.

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

A Study on Gas-Liquid Contact in a Perforated Plate-Type $SO_2$ Absorber at Flooding Conditions

  • Han, Seung-Ho;Soowoo Kwon;Sangwon Jung;Jaehyuk Junk;Yang, Chang-Ryung;Carl Weilert
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.17-28
    • /
    • 1999
  • Gas-liquid contact tests above a perforated-plate were conducted with air and water at flooding gas-flow conditions in order to study two-phase flow characteristics in a limestone-gypsum SO2 absorber. Gas layers were in the form of air pockets and confined to the limited areas around each duct pipe, while the remaining tary area were in the wet condition. The liquid above the tray was always in the flooded and even fluidized conditions at gas flows over the range studied, although vigorous bubbly or churn-turbulent two-phase regime was only observed in the immediate vicinity of the gas hole exit at low gas loads. The froth zone was extremely active to provide intimate contact between gas and liquid so that the necessary mass transfer operation can take place, which is the primary purpose of high-performance SO2 absorbers. Howefer, the absorber $\Delta$P was 250mmH2O for the initial water level at 150mm, which is an important issue to be resolved for economical operation of the SO2 absorber. It was seen in the liquid level-and gas flow-transient tests that changes in the absorber liquid inventory were much more pronounced for intimate gas-liquid contact than changes in the gas flow. Based on the 4- and 8-duct pipe test results, grouping the duct pipes near the center of the test tray seemed to promote better recirulation of liquid from gas-liquid contact zone back to the reaction tank so that the absorbed SO2 can be neutralized.

  • PDF

The Role and Focus Areas of Medical Technologists in the Field of Diagnostic Tests in the COVID-19 Era (COVID-19 시대 임상병리사의 역할 및 영역)

  • Yang, Byoung Seon;Choi, Se Mook;Bae, Hyung Joon;Kim, Yoon Sik;Lim, Yong;Kang, Hee Jung;Bae, Do Hee;Choi, Byoung Ho;Lee, Jae Suk;Park, Ji Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • This study attempted to provide the basic data for developing a system to identify the role of medical technologists and ensure an efficient response for quick and accurate diagnostic tests in the COVID-19 era. The research method involved using focus group interviews for a survey and analysis of 15 medical institutions. Eleven sample collection institutions, 10.4 medical technologists, 2.1 minutes of collection time, 5.4 hours of test time, 9,670 tests, 6.2 member test workforce size, and 7 screening center operating institutions were surveyed. The results of the focus group interview analysis revealed that there were no standardized guidelines covering working hours, area, and environment to protect sample collectors and testers in relation to the COVID-19 tests. Also, legal protection measures were insufficient in the event of accidental infections and there were no personnel regulations related to COVID-19. In addition, the professional training of sample collectors and molecular diagnostic testers was required for reliable COVID-19 testing. In conclusion, it is necessary to provide professional education through special test short-term training institutions to cope with emergency infectious diseases such as COVID-19. Legal systems should be put in place to protect the workforce and ensure stability.

Performance Evaluation of the Cast-in-place Anchor Bolt in Non-cracked Concrete used in Power Plant Facilities (비균열 콘크리트에 매립된 발전설비 정착부 선 설치 앵커의 구조성능 평가)

  • Kim, Dong-Ik;Jong, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.250-258
    • /
    • 2019
  • The seismic performance and stability of operating facilities installed in domestic power plants need to be verified because of the increased incidence of earthquakes resulting in power plant damage due to the overturning failure of electric operating facilities. In this study, a structural performance evaluation of the anchor bolts constructed to setup the operating facilities on concrete slabs was carried out through an on-site inspection of power plants, called Daechung-Dam. M10 J hook and M12 J hook anchor bolts were installed in the field unit. According to the ASTM E 488-96 specifications, anchor bolt pullout and shear tests were carried out and compared with the anchor-bolt design standards. The results from the tension and shear pullout tests showed that the M10 and M12 J hook anchor bolts had higher performance than the required design load. Thus, they were found to be safe enough. Nevertheless, more research in the field of analytical study will be needed in the near future.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF

Web-shear strength of steel-concrete composite beams with prestressed wide flange and hollowed steel webs: Experimental and practical approach

  • Han, Sun-Jin;Kim, Jae Hyun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.311-321
    • /
    • 2022
  • In the buildings with long spans and high floors, such as logistics warehouses and semiconductor factories, it is difficult to install supporting posts under beams during construction. Therefore, the size of structural members becomes larger inevitably, resulting in a significant increase in construction costs. Accordingly, a prestressed hybrid wide flange (PHWF) beam with hollowed steel webs was developed, which can reduce construction costs by making multiple openings in the web of the steel member embedded in concrete. However, since multiple openings exist and prestress is introduced only into the bottom flange concrete, it is necessary to identify the shear resistance mechanism of the PHWF beam. This study presents experimental shear tests of PHWF beams with hollowed steel webs. Four PHWF beams with cast-in-place (CIP) concrete were fabricated, with key variables being the width and spacing of the steel webs embedded in the concrete and the presence of shear reinforcing bars, and web-shear tests were conducted. The shear behavior of the PHWF beam, including crack patterns, strain behavior of steel webs, and composite action between the prestressed bottom flange and CIP concrete, were measured and analyzed comprehensively. The test results showed that the steel web resists external shear forces through shear deformation when its width is sufficiently large, but as its width decreased, it exerted its shear contribution through normal deformation in a manner similar to that of shear reinforcing bars. In addition, it was found that stirrups placed on the cross section where the steel web does not exist contribute to improving the shear strength and deformation capacity of the member. Based on the shear behavior of the specimens, a straightforward calculation method was proposed to estimate the web-shear strength of PHWF beams with CIP concrete, and it provided a good estimation of the shear strength of PHWF beams, more accurate than the existing code equations.