• 제목/요약/키워드: in-pipe robot

검색결과 96건 처리시간 0.034초

하수관 보수를 위한 Packer 설계 및 제작 (Design and Manufacture of the Packer of Sewages Mainteance)

  • 정재후;윤지섭;김영환;이종열;홍동희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.576-579
    • /
    • 1997
  • In order to repair sewage pipes, it is necessary to dig up the damaged sewage pipes, which results in traffic jams. Since digging up the pipes takes too much time and cost, this method is inefficient. So, in stead of digging up the damaged pipes, a robot is sent down to the pipe to do the repair works. For big pipes, human workers go into the pipe and do to repair works, but for small pipes, it is impossible for human worker to go inside the pipe. In this case, mobile robots have used. The procedures for repairing pipes are as follows : First, the condition of the sewage pipes is observed by a robot. Second, appropriate steps for repair are determined according to the types of the damage. While repairing procedures, a newly-developed packer is sent into the sport to be repaired inside the pipe. Then, the packer is filled with air by a V-shaped wrinkel pipe. This makes the packer inflates uniformly and adhere closely to the inside wall of the pipe in large area. This increases the area that can be repaired. Therefore, the newly-developed packer will be very helpful for sewage pipe repair works.

  • PDF

지하매설 배관의 보수를 위한 로봇시스템 개발 (Development of a Robot System for Repairing a Underground Pipe)

  • 여희주
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.1270-1274
    • /
    • 2012
  • 국내의 배관시설은 약 30년이 지난 지금 배관의 노후화에 따른 부식 및 결함 등이 나타나기 시작하고 있다. 저비용 고효율의 노후관 갱생을 위한 배관 로봇시스템 개발에 대한 많은 연구가 진행되어 왔다. 배관의 탐사, 표면처리와 도장기술 및 열악한 작업환경에서의 고장에 강인한 로봇시스템 구성은 배관 로봇의 중요한 요인으로 알려져 있다. 지하매설 배관의 관리는 경제적 부담과 고도의 기술이 요구되는 실정에 업체에서 쉽게 대응하기 어려운 실정이다. 이러한 이유로 인하여 본 논문에서는 로봇의 노후관 탐사, 표면처리 및 도장이 가능한 로봇 시스템을 개발하였다. 개발된 로봇은 벽면 압착방식을 이용하여 구동력 및 작업을 위한 견인력을 확보하였다.

Robot Posture Estimation Using Inner-Pipe Image

  • Sup, Yoon-Ji;Sok, Kang-E
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.173.1-173
    • /
    • 2001
  • This paper proposes the methodology in image processing algorithm that estimates the pose of the pipe crawling robot. The pipe crawling robots are usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light varies with the robot posture. The algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

  • PDF

Two-module robotic pipe inspection system with EMATs

  • Lee, Jin-Hyuk;Han, Sangchul;Ahn, Jaekyu;Kim, Dae-Hyun;Moon, Hyungpil
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.1041-1063
    • /
    • 2014
  • This work introduces a two-module robotic pipe inspection system with ultrasonic NDE device to evaluate the integrity of pipe structures. The proposed robotic platform has high mobility. The two module mobile robot platform overcomes pipe obstacle structures such as elbow, or T-branch joints by cooperative maneuvers. Also, it can climb up the straight pipeline at a fast speed due to the wheel driven mechanism. For inspection of pipe structure, SH-waves generated by EMAT are applied with additional signal processing methods. A wavelet transform is implemented to extract a meaningful and specific signal from the superposed SH-wave signals. Intensity ratio which is normalized the defect signals intensity by the maximum intensity of directly transmitted signals in the wavelet transforms spectrum is applied to evaluate defects quantitatively. It is experimentally verified that the robotic ultrasonic inspection system with EMAT is capable of non-destructive inspection and evaluation of defects in pipe structure successfully by applying signal processing method based on wavelet transform.

클러치기반의 선택적 구동방식을 이용한 배관로봇의 개발 (Development of In-Pipe Robot Using Clutch-Based Selective Driving Algorithm)

  • 김도완;노세곤;이정섭;이수환;최혁렬
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.223-231
    • /
    • 2008
  • This paper introduces a robot called the MRINSPECT V (Multifunctional Robotic crawler for Inpipe in-SPECTion V) for the inspection of pipelines with a nominal 8-in inside diameter. Based on the mechanism of the previous model MRINSPECT IV, we developed a new MRINSPECT V by using the differential driving mechanism, so that just simply controlling the speed of each driving units helps the robot to travel effectively inside the pipelines. Furthermore, the robot uses clutches in transmitting driving power to wheels. This clutch mechanism enables MRINSPECT V to select the suitable driving method according to the shape of pipeline. In this paper, the critical points in design and construction of the proposed robot are described with the preliminary results to provide good mobility and increase the efficiency.

그리스 충전 덕트 내 탐상을 위한 스크류 추진 로봇 (Screw-Propelled Robot for Detecting Grease Pipe)

  • 김호중;김동선;김진현
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.178-182
    • /
    • 2022
  • Post-tension duct in nuclear reactor containment building is filled with grease to prevent steel strand from corroding. If grease leaks by break of duct, steel strand will corrode and cause problem in building safety. Therefore, grease leak should be checked preventatively. But currently used method is inefficient, since it has to remove grease and strand to check. And other methods for checking post-tension dust are not well-researched. In this paper, we develop screw-propelled robot that can move in grease and detect grease duct directly. Also, we make the test environment that is similar to real post-tension duct of containment building and test robot in that environment to verify that our robot is feasible in the post-tension duct. The robot can move forward and backward in grease duct by twin screw mechanism and has mount for sensors to detect grease leakage and strand corrosion.