• Title/Summary/Keyword: in-phase and quadrature

Search Result 329, Processing Time 0.036 seconds

Differential 2.4-GHz CMOS Power Amplifier Using an Asymmetric Differential Inductor to Improve Linearity (비대칭 차동 인덕터를 이용한 2.4-GHz 선형 CMOS 전력 증폭기)

  • Jang, Seongjin;Lee, Changhyun;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.726-732
    • /
    • 2019
  • In this study, we proposed an asymmetric differential inductor to improve the linearity of differential power amplifiers. Considering the phase error between differential signals of the differential amplifier, the location of the center tap of the differential inductor was modified to minimize the error. As a result, the center tap was positioned asymmetrically inside the differential inductor. With the asymmetric differential inductor, the AM-to-AM and AM-to-PM distortions of the amplifier were suppressed. To confirm the feasibility of the inductor, we designed a 2.4 GHz differential CMOS PA for IEEE 802.11n WLAN applications with a 64-quadrature amplitude modulation (QAM), 9.6 dB peak-to-average power ratio (PAPR), and a bandwidth of 20 MHz. The designed power amplifier was fabricated using the 180-nm RF CMOS process. The measured maximum linear output power was 17 dBm, whereas EVM was 5%.

Position Estimation Technique of High Speed Vehicle Using TLM Timing Synchronization Signal (TLM 시각 동기 신호를 이용한 고속 이동체의 위치 추정)

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.319-324
    • /
    • 2022
  • If radio interference occurs or there is no navigation device, radio navigation of high-speed moving object becomes impossible. Nevertheless, if there are multiple ground stations and precise range measurement between the high-speed moving object and the ground station can be secured, it is possible to estimate the position of moving object. This paper proposes a position estimation method using high-precision TDOA measurement generated using TLM signal. In the proposed method, a common error of moving object is removed using the TDOA measurements. The measurements is generated based on TLM signal including SOQPSK PN symbol capable of precise timing synchronization. Therefore, since precise timing synchronization of the system has been performed, the timing error between ground stations has a very small value. This improved the position estimation performance by increasing the accuracy of the measured values. The proposed method is verified through software-based simulation, and the performance of estimated position satisfies the target performance.

Design of a 16-QAM Carrier Recovery Loop for Inmarsat M4 System Receiver (Inmarsat M4 시스템 수신기를 위한 16-QAM Carrier Recovery Loop 설계)

  • Jang, Kyung-Doc;Han, Jung-Su;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.440-449
    • /
    • 2008
  • In this paper, we propose a 16-QAM carrier recovery loop which is suitable for the implementation of Inmarsat M4 system receiver. Because the frequency offset of ${\pm}924\;Hz$ on signal bandwidth 33.6 kHz is recommended in Inmarsat M4 system specification, carrier recovery loop having stable operation in the channel environment with large relative frequency offset is required. the carrier recovery loop which adopts only PLL can't be stable in relatively large frequency offset environment. Therefore, we propose a carrier recovery loop which has stable operation in large relative frequency offset environment for Inmarsat M4 system. The proposed carrier recovery loop employed differential filter-based noncoherent UW detector which is robust to frequency offset, CP-AFC for initial frequency offset acquisition using UW signal, and 16-QAM DD-PLL for phase tracking using data signal to overcome large relative frequency offset and achieve stable carrier recovery performance. Simulation results show that the proposed carrier recovery loop has stable operation and satisfactory performance in large relative frequency offset environment for Inmarsat M4 system.

The Design of Predistortion Linearizer with Polar Function Generator for Cellular Band Using Even Order Harmonic Signals (2차 고조파 신호를 이용한 극 함수 발생기를 갖는 셀룰라 밴드용 전치 왜곡 선형화기 설계)

  • Kim, Ell-Kou;Jeon, Ki-Kyoung;Kim, Young;Kwon, Sang-Keun;Yoon, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1050-1057
    • /
    • 2006
  • This paper proposes a new predistortion linearizer with amplitude modulator and PFG(Polar Function Generator) using second order harmonic signals. This linearizer consists of PFG that combine with in-phase and quadrature-phase of second harmonic signals and amplitude modulator in main path. The predistorted third order intermodulation distortion(IMD3) signals that are generated by amplitude modulator with fundamental and PFG signals, improve a amplifier nonlinear characteristics. The proposed linearizer and amplifier have been manufactured and tested to operate in cellular base-station transmitting band$(869\sim894MHz)$. The test results show that IMD3 can be removed by more than 22.5 dB in case of CW 2-tone signals ${\Delta}f=1$ MHz, and the adjacent channel power ratio(ACPR) also can be improved by more than 8.4 dB for CDMA IS-95 1FA signals.

A development of DS/CDMA MODEM architecture and its implementation (DS/CDMA 모뎀 구조와 ASIC Chip Set 개발)

  • 김제우;박종현;김석중;심복태;이홍직
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1210-1230
    • /
    • 1997
  • In this paper, we suggest an architecture of DS/CDMA tranceiver composed of one pilot channel used as reference and multiple traffic channels. The pilot channel-an unmodulated PN code-is used as the reference signal for synchronization of PN code and data demondulation. The coherent demodulation architecture is also exploited for the reverse link as well as for the forward link. Here are the characteristics of the suggested DS/CDMA system. First, we suggest an interlaced quadrature spreading(IQS) method. In this method, the PN coe for I-phase 1st channel is used for Q-phase 2nd channels and the PN code for Q-phase 1st channel is used for I-phase 2nd channel, and so on-which is quite different from the eisting spreading schemes of DS/CDMA systems, such as IS-95 digital CDMA cellular or W-CDMA for PCS. By doing IQS spreading, we can drastically reduce the zero crossing rate of the RF signals. Second, we introduce an adaptive threshold setting for the synchronization of PN code, an initial acquistion method that uses a single PN code generator and reduces the acquistion time by a half compared the existing ones, and exploit the state machines to reduce the reacquistion time Third, various kinds of functions, such as automatic frequency control(AFC), automatic level control(ALC), bit-error-rate(BER) estimator, and spectral shaping for reducing the adjacent channel interference, are introduced to improve the system performance. Fourth, we designed and implemented the DS/CDMA MODEM to be used for variable transmission rate applications-from 16Kbps to 1.024Mbps. We developed and confirmed the DS/CDMA MODEM architecture through mathematical analysis and various kind of simulations. The ASIC design was done using VHDL coding and synthesis. To cope with several different kinds of applications, we developed transmitter and receiver ASICs separately. While a single transmitter or receiver ASC contains three channels (one for the pilot and the others for the traffic channels), by combining several transmitter ASICs, we can expand the number of channels up to 64. The ASICs are now under use for implementing a line-of-sight (LOS) radio equipment.

  • PDF

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.

A PN-code Acquisition method Using Array Antenna Systems for CDMA2000 1x (CDMA2000 1x용 배열 안테나 시스템에서 PN 동기 획득 방법)

  • Jo, Hee-Nam;Yun, Yu-Suk;Choi, Seung-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.33-40
    • /
    • 2005
  • This paper presents a structure of the searcher using a diversity in array antenna systems operating in the cdma2000 1x signal environments. The new technique exploits the fact that the In-phase and quadrature components of interferers can respectively be viewed as an independent gaussian noise at each antnna element in most practical cdma signal environments. The proposed PN acquisition scheme is a singles-dwell PN acquisition system consisting of two stages, that is, the searching stage and the verification stage. The searching stage independently correlates the receiver multiple signals with PN generator of each antenna element for obtaining the synchronous energy at the entire region. Then, the searching results of each antenna element are non-coherently combinind. The verification stage compares the searching energy with the optimal threshold, which is predesigned in the lock detector, and decides whether the acquisition is successful or fail. In this paper, we analyzed the effect of tile diversity order to determine the mean acquisition time. In general, it is known that the mean acquisition time significantly decrease as the number of antenna elements increases. But, as the diversity order goes up, the enhancement of the performance is saturated. Therefore, to decrease the mean acquisition time of the searcher, we must design the optimal array antenna systems by considering the operating SNR range of the receiver, the probability of detection $P_D$ and that of false alarm $P_{FA}$ . The Performance of the proposed PN acquisition scheme is analyzed in frequency selective Rayleigh fading channels. In this paper, the effect of the number of antenna elements on PN acquisition scheme is shown according to the probability of detection $P_D$ and that of false alarm $P_{FA}$.

Analysis and Design Theory of Aperture-Coupled Cavity-Fed Back-to-Back Microstrip Directional Coupler (개구면 결합 공진기 급전 마이크로스트립 방향성결합기 해석 및 설계)

  • Nam, Sang-Ho;Jang, Guk-Hyun;Nam, Kyung-Min;Lee, Jang-Hwan;Kim, Chul-Un;Kim, Jeong-Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.7-17
    • /
    • 2007
  • An analysis and design theory of an aperture-coupled cavity-fed back-to-back microstrip directional coupler is presented for the efficient and optimized design. For this purpose, an equivalent network is developed, and simple but accurate calculations of circuit element values are described. Design equations of the coupler are derived based on the equivalent circuit. In order to determine various structural design parameters, the evolutionary hybrid optimization method based on the genetic algorithm and Nelder-Mead method is invoked. As a validation check of the proposed theory and optimized design method, a 10 dB directional coupler was designed and fabricated. The measured coupling was 10.3 dB at 3 GHz, and the return loss and isolation were 31.8 dB and 30.5 dB, respectively. The directional coupler also showed very good quadrature phase characteristics. Good agreements between the measured and the design specifications fully validate the proposed network analysis and design procedure.

Hybrid Two-Dimensional Proton Spectroscopic Imaging of Pediatric Brain: Clinical Application (소아 뇌에서의 혼성 이차원 양성자자기공명분광법의 임상적 응용)

  • Sung Won Youn;Sang Kwon Lee;Yongmin Chang;No Hyuck Park;Jong Min Lee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.64-72
    • /
    • 2002
  • Purpose : To introduce and demonstrate the advantages of the new hybrid two-dimensional (2D) proton spectroscopic imaging (SI) over the single voxel spectroscopy (SVS) and conventional 2D SI in the clinical application of spectroscopy for pediatric cerebral disease. Materials and Methods : Eighty-one hybrid 2D proton spectroscopic imaging was performed in 79 children (36 normal infants and children, 10 with hypoxic-ischemic injury, 20 with toxic-metabolic encephalopathy, seven with brain tumor, three with meningoencephalitis, one with neurofibromatosis, one with Sturge-Weber syndrome and one with lissencephaly) ranging in age from the third day of life to 15 years. In adult volunteers (n=5), all three techniques including hybrid 2D proton SI, SVS using PRESS sequence, and conventional 2D proton SI were performed. Both hybrid 2D proton SI and SVS using PRESS sequence were performed in clinical cases (n=). All measurements were performed with a 1.5-T scanner using standard head quadrature coil. The 16$\times$16 phase encoding steps were set on variable field of view (FOV) depending on the size of the brain. The hybrid volume of interest inside FOV was set as $75{\times}75{\times}15{\;}\textrm{mm}^3$ or smaller to get rid of unwanted fat signal. Point-resolved spectroscopy (TR/TE=1,500 msec/135 or 270msec) was employed with standard chemical shift selective saturation (CHESSI pulses for water suppression. The acquisition time and spectral quality of hybrid 2D proton SI were compared with those of SVS and conventional 2D proton SI. Results : The hybrid 2D proton SI was successfully conducted upon all patients.

  • PDF