• Title/Summary/Keyword: in-flight droplet

Search Result 26, Processing Time 0.029 seconds

Thermal History Analysis and Solid Fraction Prediction of Gas-Atomized Alloy Droplets during Spray Forming (분무성형 공정에서 분무액적의 열이력 해석 및 고상분율 예측)

  • 이언식
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.85-94
    • /
    • 1994
  • In order to predict droplet velocity and temperature profiles and fractional solidification with flight distance during spray forming, the Newtonian heat transfer formulation has been coupled with the classical heterogeneous nucleation and the specific solidification process. It has been demonstrated that the thermal profile of the droplet in flight is significantly affected by process parameters such as droplet size, initial gas velocity, undercooling. As the droplet size and/or the initial gas velocity increase, the onset and completion of solidification are shifted to greater flight distances and the solidification process also extends over a wider range of flight distances. The amounts of solid fractions formed during recoalescence, segregated solidification and eutectic solidification are insensitive to droplet size and initial gas velocity whereas those are strongly affected by the degree of undercooling. There are good linear relations between the undercooling and the corresponding solid fractions generated during recoalesced, segregated and eutectic stages.

  • PDF

Numerical Analysis on the Collision Behaviors of in-flight Droplets During Gas Atomization (가스 분무 시 비행 액적의 충돌 현상에 관한 수치적 고찰)

  • Seok, Hyun Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.506-515
    • /
    • 2008
  • Recently, it is exceedingly required to produce metal powders with tailored shape and phase altogether in order to fabricate high performance functional parts such as magnetic core or electro-magnetic noise suppressor for high frequency usage. Therefore, the collision phenomena of in-flight droplets against chamber wall or neighboring in-flight droplets each other is investigated by a computational method in order to get useful information about how to design the atomizing system and how to tailor process parameters not to make irregular-shaped powders during gas atomization process. As a results, smaller powders, lower melt temperature are known to be favorable for droplets not to collide against chamber wall. In additions, powders of narrower size distribution range, lower droplet generation rate, lower melt temperature, lower gas velocity are desirable to prevent droplet-collisions against neighboring in-flight droplets.

Nozzle Flow Characteristics and Simulation of Pesticide Spraying Drone (농약 살포 드론의 노즐 유동 특성 및 시뮬레이션)

  • Kang, Ki-Jun;Chang, Se-Myong;Ra, In-Ho;Kim, Sun-Woo;Kim, Heung-Tae
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 2019
  • When there is a spray flow such as from a pesticide nozzle, winds affect the droplet flow of a rotary-wing drone accompanied by a strong wake, with a severe oscillation. Especially, during forwarding flights or when winds come from the side, compare to a simple hovering flight as the droplet is in the effect of aerodynamic drag force, the effect of spraying region becomes even larger. For this reason, the spraying of pesticides using drones may cause a greater risk of scattering or a difference in droplet dispersion between locations, resulting in a decrease in efficiency. Therefore, through proper numerical modeling and its applied simulation, an indication tool is required applicable for the various flight and atmospheric conditions. In this research, we completed both experiment and numerical analysis for the strong downwash from the rotor and flight velocity of the drone by comparing the probability density function of droplet distribution to build a spraying system that can improve the efficiency when spraying droplets in the pesticide spray drone.

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

NUMERICAL SIMULATION OF A TRANSONIC AIRFOIL IN THE CLOUD WITH THE DROPLET-LADEN INVISCID AIR FLOW MODEL (액적이 있는 비점성 공기유동 모델을 이용한 구름속의 천음속 에어포일 수치해석)

  • Yeom, G.S.;Chang, K.S.;Baek, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.291-293
    • /
    • 2011
  • In this paper, the problem of transonic aerodynamic characteristics of a NACA0012 airfoil is numerically investigated in the inviscid gas-droplet two-phase flow with the compressible two-fluid model. In the present study, the airfoil flight in the cloud is simulated by taking account of the viscous drag of the droplets, the heat transfer, the phase change, and the droplet fragmentation The two-fluid equation system is solved by the fractional-step method and the WAF-HIL scheme. The effects of size and volume fraction of the droplets on the flow characteristics of the airfoil in the cloud are elaborated and discussed.

  • PDF

Uniformity Analysis of Unmanned Aerial Application with Variable Rate Spray System (무인항공 변량방제 시스템의 살포 균일도 분석)

  • Koo, Young Mo;Bae, Yeonghwan
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.111-125
    • /
    • 2018
  • In this study, we evaluated the uniformity of deposition rate and particle size distributions of the variable rate application technique using the unmanned rotorcraft by measuring the spray pattern according to path location in the range of spraying flight. The coefficient of variation (CV) of the lateral coverage rate for the overlapped distribution with the spray swath of 3.6 m in both guidance and auto-pilot flight modes maintaining constant flight speed was about 30% and the CV of the coverage rate by the flight path location was extremely small. Therefore, it was assessed that the variable rate application technology compensating for the variation of ground speed was superior in terms of spray uniformity. In addition, the droplet size distributions in both volume median diameter(VMD) and number median diameter(NMD) were adequate for aerial application and uniform in terms of lateral distribution. Thereafter, we intend to contribute to a precise application on small-scaled fields using the unmanned agricultural rotorcraft by the variable rate application.

COMPUTATIONAL PREDICTION OF ICE ACCRETION AROUND A ROTORCRAFT AIR INTAKE (회전익기 공기흡입구의 표면발생 결빙에 관한 전산 예측)

  • Jung, K.Y.;Ahn, G.B.;Myong, R.S.;Cho, T.H.;Jung, S.K.;Shin, H.B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Ice accretion on the surface of aircraft in flight can adversely affect the safety of aircraft. In particular, it can cause degradation of critical aircraft performances such as maximum lift coefficient and total pressure recovery factor in engine air intake. In this study, computational prediction of ice accretion around a rotorcraft air intake is conducted in order to identify the impingement region with high droplet collection efficiency. Then the amount of ice accretion on the air intake, which is essential in determining the required power of ice protection system, is calculated. Finally, the effect of icing wind tunnel size is investigated in order to check the compatibility with the real in-flight test environment.