• 제목/요약/키워드: in vivo angiogenesis

검색결과 137건 처리시간 0.026초

Novel DOX-MTX Nanoparticles Improve Oral SCC Clinical Outcome by Down Regulation of Lymph Dissemination Factor VEGF-C Expression in vivo: Oral and IV Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Seidi, Khaled;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6227-6232
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. The aim of present study was to evaluate the efficacy of novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in terms of their potential to change the VEGF-C expression profile in a rat OSCC model. Materials and Methods: 120 male rats were divided into 8 groups of 15 animals administrated with 4-nitroquinoline-1-oxide to induce OSCCs. Newly formulated doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) and free doxorubicin were IV and orally administered. Results: Results indicated that both oral and IV forms of DOX-MTX-nanoparticle complexes caused significant decrease in the mRNA level of VEGF-C compared to untreated cancerous rats (p<0.05). Surprisingly, the VEGF-C mRNA was not affected by free DOX in both IV and oral modalities (p>0.05). Furthermore, in DOX-MTX NP treated group, less tumors characterized with advanced stage and VEGF-C mRNA level paralleled with improved clinical outcome (p<0.05). In addition, compared to untreated healthy rats, the VEGF-C expression was not affected in healthy groups that were treated with IV and oral dosages of nanodrug (p>0.05). Conclusions: VEGF-C is one of the main prognosticators for lymph node metastasis in OSCC. Down-regulation of this lymph-angiogenesis promoting factor is a new feature acquired in group treated with dual action DOX-MTX-NPs. Beside the synergic apoptotic properties of concomitant use of DOX and MTX on OSCC, DOX-MTX NPs possessed anti-angiogenesis properties which was related to the improved clinical outcome in treated rats. Taking together, we conclude that our multifunctional doxorubicin-methotrexate complex exerts specific potent apoptotic and anti-angiogenesis properties that could ameliorate the clinical outcome presumably via down-regulating dissemination factor-VEGF-C expression in a rat OSCC model.

Anti-Angiogenic Activity of Gecko Aqueous Extracts and its Macromolecular Components in CAM and HUVE-12 Cells

  • Tang, Zhen;Huang, Shu-Qiong;Liu, Jian-Ting;Jiang, Gui-Xiang;Wang, Chun-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.2081-2086
    • /
    • 2015
  • Gecko is a kind of traditional Chinese medicine with remarkable antineoplastic activity. However, undefined mechanisms and ambiguity regarding active ingredients limit new drug development from gecko. This study was conducted to assess anti-angiogenic properties of the aqueous extracts of fresh gecko (AG) or macromolecular components separated from AG (M-AG). An enzyme-linked immunosorbent assay (ELISA) approach was applied to detect the vascular endothelial growth factor (VEGF) secretion of the tumor cells treated with AG or M-AG. The effect of AG or M-AG on vascular endothelial cell proliferation and migratory ability was analyzed by tetrazolium dye colorimetric method, transwell and wound-healing assays. Chick embryo chorioallantoic membrane (CAM) assays were used to ensure the anti-angiogenic activity of M-AG in vivo. The results showed that AG or M-AG inhibited the VEGF secretion of tumor cells, the relative inhibition rates of AG and M-AG being 27.2% and 53.2% respectively at a concentration of $20{\mu}L/mL$. AG and M-AG inhibited the vascular endothelial (VE) cell proliferation with IC50 values of $11.5{\pm}0.5{\mu}L/mL$ and $12.9{\pm}0.4{\mu}L/mL$ respectively. The VE cell migration potential was inhibited significantly (p<0.01) by the AG (${\geq}24{\mu}L/mL$) or M-AG (${\geq}12\mu}L/mL$) treatment. In vivo, neovascularization of CAM treated with M-AG was inhibited significantly (p<0.05) at a concentration of ${\geq}0.4{\mu}L/mL$. This study provided evidence that anti-angiogenesis is one of the anti-tumor mechanisms of AG and M-AG, with the latter as a promising active component.

Kinetic analysis of 64Cu-NODAGA-gluco-E[c(RGDfK)]2 for a tumor angiogenesis PET tracer

  • Choi, Jae Yong;Park, Ji-Ae;Kim, Jung Young;Lee, Ji Woong;Lee, Minkyung;Shin, Un Chol;Kang, Joo Hyun;An, Gwang Il;Lee, Kyo Chul;Ryu, Young Hoon;Kim, Kyeong Min
    • 대한방사성의약품학회지
    • /
    • 제2권2호
    • /
    • pp.108-112
    • /
    • 2016
  • Molecular imaging with the radiolabeled RGD peptides for ${\alpha}_v{\beta}_3$ integrin has been an increasing interest for tumor diagnosis and the treatment monitoring. Recently, $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ was developed for quantification of ${\alpha}_v{\beta}_3$ integrin and its biological properties was elucidated. To better understand the molecular process in vivo, we performed the kinetic analysis for the $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$. After preparation of a radiotracer, dynamic PET images were obtained in the U87MG xenograft mice for 60 min (n = 6). Binding potential values were estimated from the 3-tissue compartment model, reference Logan and simplified reference tissue model. In the early time frame (0-20 min), the liver, kidney, intestine, urinary bladder and tumor were visualized but these uptakes were diminished as time went by. The tumors showed a good contrast at 40 min after administration. $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ showed the 2-fold uptake in the tumor compared with that in the muscle. The parametric maps for binding values also provide the higher tumor-to-background contrast than the static images. A binding value obtained from the 3-tissue compartment model was comparable to other modeling methods. From these results, we conclude that $^{64}Cu$-NODAGA-gluco-E[c(RGDfK)]$_2$ may be a promising PET radiotracer for the evaluation of angiogenesis.

Molecular Imaging of Arthritis in the Angiogenic Vasculature Using A 123I-Vascular Endothelial Growth Factor Receptor Antibody

  • Kim, Sung-Min;Choi, Na-Eun;Song, Young-Kyu;Cho, Gyung-Goo;Bang, Jeong-Kyu;Kim, Sang-Mi;Lee, Sang-Hoon;Ryu, Eun-Kyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1890-1894
    • /
    • 2012
  • Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) have been implicated in the pathogenesis of rheumatoid arthritis, which is angiogenesis dependent. Antibody-based molecular imaging improves targeting, and antibody radiolabeling is useful for monitoring biological events $in$ $vivo$ $via$ PET or SPECT. We investigated the potential of molecular imaging to diagnose arthritis with VEGFR-2 $in$ $vivo$. The $^{123}I$-VEGFR-2 antibody was prepared by the iodogen tube method. The radioligand was injected into arthritic mice, and micro SPECT/CT was performed. The arthritic mice were examined by 4.7-T MRI and immunohistochemistry. The $^{123}I$-VEGFR-2 antibody showed high uptake in the arthritic region at 1 h postinjection on SPECT/CT but no uptake in the control animals after radioligand injection. In MR images, the arthritic tissue of the mice was correlated with regions labeled by the $^{123}I$-VEGFR-2 antibody. Immunohistochemical localization showed markedly increased expression of VEGFR-2 in the endothelial cells, fibroblasts, and macrophages of the arthritic mice.

A Composite Dermal Filler Comprising Cross-Linked Hyaluronic Acid and Human Collagen for Tissue Reconstruction

  • Kim, Z-Hun;Lee, Yongjun;Kim, Sun-Mi;Kim, Hojin;Yun, Chang-Koo;Choi, Yong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권3호
    • /
    • pp.399-406
    • /
    • 2015
  • In this study, we developed a composite filler comprising cross-linked hyaluronic acid (HA) and human collagen (COL) derived from the human umbilical cord with the aim of improving its biocompatibility and longevity compared with commercially available fillers. After HA/COL composite fillers were made in two different ratios (10:1 and 5:1), the physical properties of the fillers were evaluated. The interior morphologies and in vivo weight change of these hydrogels were also characterized at 1-16 weeks after injection into mice. To evaluate their biocompatibility and durability in vivo, we injected the composite fillers into nude mice subcutaneously. The variations of injected gel weight were measured and compared with the commercial dermal fillers (Restylane and TheraFill). The composites showed improved or similar physical properties (complex viscosity of 19-22 × 105 cP, and injection force of 10-12 N) over the commercial dermal fillers. Sixteen weeks following the injection, the ratio of remaining composite filler weight to initial weight (75.5 ± 16.9%; 10:1) was shown to be greater than that of the commercial fillers (43.2 ± 8.1%, Restylane; 12.3 ± 5.3%, TheraFill). In addition, immunohistochemical analysis with angiogenesis-related markers such as isolectin and vWF revealed newly formed blood vessels and cellular influx into the composite filler, which were not observed in the other fillers. These results clearly suggest that the HA/COL composite filler is a superior candidate for soft tissue reconstruction. The filler we developed may be a suitable candidate as an injectable dermal filler for tissue augmentation in humans.

암 미세환경에서 ZO 단백질의 역할 고찰 (Examining the Role of ZO Protein in the Cancer Microenvironment)

  • 김민혜;차희재
    • 생명과학회지
    • /
    • 제34권4호
    • /
    • pp.279-285
    • /
    • 2024
  • Zonula occludens (ZO) 단백질은 세포 간의 접합 및 세포질 표면에서 구조적으로 기초를 제공하는 스캐폴딩 단백질로 통합 막 단백질과 세포골격 사이를 연결해주는 역할을 하며 구조적 기능 이외에도 세포 성장 및 증식 조절에도 참여를 한다. 최근 연구들에 따르면 ZO 단백질이 여러 질병 중에서도 암에 관여를 한다는 사실을 보여주고 있다. 특히, ZO 단백질은 암 미세환경에서 암세포의 성장과 발달에 영향을 주고 있다고 보고되고 있다. ZO 단백질은 혈관신생, 염증 반응, 상피-중간엽 전이, 중간엽 줄기 세포와의 상호작용을 통해 암 미세환경에서 다양한 기능을 수행한다. 이런 작용 메커니즘은 암의 종류 및 환경적 조건에 따라 달라질 수 있어 최근까지도 이와 관련된 연구들이 진행되면서 ZO 단백질이 참여하는 여러 신호전달기작들이 밝혀지고 있다. 이를 통해 암세포 환경에서 암 성장과 발달을 늦춰줄 수 있는 새로운 치료법도 고려해 볼 수 있다. 또한 ZO 단백질의 세포 및 생체 내 역할에 대한 연구는 계속되고 있지만, 신호전달 기작들이 생체 내 암 미세환경에서 어떻게 작용하는지에 대한 이해는 아직 부족하다. 따라서, 본 리뷰에서는 ZO 단백질 관련 암 미세환경의 특징 및 조절 기작을 소개하고 ZO 단백질의 특성을 활용하여 암 세포 환경을 억제하고 생체 내 ZO 단백질의 역할을 고찰하고자 한다.

VEGFR2 Expression in Head and Neck Squamous Cell Carcinoma Cancer Cells Mediates Proliferation and Invasion

  • Xu, Hui-Min;Zhu, Jian-Guo;Gu, Lian;Hu, Song-Qun;Wu, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2217-2221
    • /
    • 2016
  • Vascular endothelial growth factor 2 (VEGFR2) was initially identified as a receptor of VEGF on endothelial cells with a role in regulating angiogenesis during organism development and tumorigenesis. Previously, in cancer tissue, VEGFR2 has been reported to be expressed in endothelial cells. In our research, we found that VEGFR2 was expressed not only in endothelial cells but also cancer cells in head and neck squamous cell carcinomas (HNSCCs). Knockdown of VEGFR2 in Hep2 cells could arrest the cell cycle in G0/G1, leading to a decrease in proliferation. We also present evidence that MAPK/ERK signal pathways and expression of CDK1 downstream of VEGFR2 might regulate proliferation and cell cycle arrest. Furthermore, we discovered that down-regulate VEGRF2 in Hep2 cells could significantly affect the invasion ability. Taken together, our data suggest that VEGFR2 might regulate proliferation and invasion in HNSCC cancer cells in vivo.

인체폐암세포 조직배양계(histocultures)에서 티라파자민의 약력학 (Pharmacodynamics of Tirapazamine in Histocultures of a Human Lung Adenocarcinoma Xenograft)

  • 박종국;구효정
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권4호
    • /
    • pp.231-237
    • /
    • 2006
  • Hypoxia in solid tumors is known to contribute to intrinsic chemoresistance. Histocultures are in vitro 3 dimensional cultures of tumor tissues and maintain the characteristic microenvironment of human solid tumors in vivo including hypoxia and multicellular structure. In this study, we evaluated the pharmacodynamics of tirapazamine(TPZ), a hypoxia-selective cytotoxin, in human non small cell lung cancer(NSCLC) cells grown as monolayers and histocultures. Antiproliferative activity of TPZ was determined after various conditions of drug exposure, and cell cycle arrest and apoptosis were also measured using flow cytometry. In monolayers, hypoxia selectivity measured by hypoxic/normoxic cytotoxicity ratio was increased with longer exposure. Lower cytotoxicity of TPZ was observed in histocultures compared to monolayers, however, a similar level of cytotoxicity was obtained with longer exposure of 96 hr. TPZ induced $G_2/M$ arrest and apoptosis in both culture conditions, which were greatly enhanced under hypoxic condition. Our data clearly showed the different pharmacodynamics of TPZ in monolayers and histocultures. Antiproliferative activity of TPZ against human solid tumors can be improved with longer drug exposure by exploiting drug delivery systems or by combining angiogenesis inhibitors to maintain drug concentration in tumor tissues.

High NDRG3 expression facilitates HCC metastasis by promoting nuclear translocation of β-catenin

  • Shi, JiKui;Zheng, HongZhen;Yuan, LingYan
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.451-456
    • /
    • 2019
  • NDRG1 has been reported to exert pivotal roles in tumor progression and metastasis via Wnt/${\beta}$-catenin signaling pathway. However, little is known about the role of NDRG3 in hepatocarcinogenesis despite its classification in the same subfamily of NDRG1. The present study was aimed to characterize the expression pattern and understand the biological roles of NDRG3 in hepatocarcinogenesis, as a means to exploit its therapeutic potential. It was observed that NDRG3 was up-regulated in HCC tissues and higher NDRG3 expression was associated with significantly shorter overall survival. Furthermore, a lower level of NDRG3 exhibited marked positive correlation with metastasis-free survival. In vitro and in vivo experiments revealed that knock-down of NDRG3 inhibits HCC metastasis and angiogenesis. We further demonstrated that activation of WNT/${\beta}$-catenin signaling and enhanced CSC-like properties were responsible for NDRG3-mediated promoting effect on HCC. In conclusion, the principal findings demonstrated that high NDRG3 expression facilitates HCC metastasis via regulating the turnover of ${\beta}$-catenin, as well as provides a potential therapeutic target for future therapeutic interventions.

Developmental Abnormalities in Zebrafish Angiogenesis with Chronic Exposure to Crude Oil and Dispersant

  • Lee, Suyeon;Kim, Kyoohyun;Kim, Hyunjin;Yeo, Sang-Yeob
    • 환경생물
    • /
    • 제31권1호
    • /
    • pp.10-18
    • /
    • 2013
  • Oil spills have occurred throughout the years of industrialization and represent a global challenge as they affect vast areas of the ocean. The toxicity of crude oil to aquatic organisms has been extensively investigated, but the potential impacts of crude oil on vertebrate development remain largely unknown. Here, we investigated the effects of dispersants used in treating a recent oil spill, as well as that of crude oil, on vertebrates by using the zebrafish (Danio rerio) model species, which has been widely used in empirical studies of both early embryonic development and adult physiology. Chronic exposure to crude oil resulted in marked developmental abnormalities, including pericardial edema, abnormal trunk vessel development, retardation of axonal branching, and abnormal jaw development. Embryonic development was affected more severely by exposure to the oil-dispersant combination than to the oil alone. Thus, the zebrafish in vivo model system suggests that dispersant treatment can have detrimental developmental effects on vertebrates and its potential impact on marine life, as well as humans, should be carefully considered in clean-up efforts at the site of an oil spill.