• Title/Summary/Keyword: in vivo angiogenesis

Search Result 137, Processing Time 0.024 seconds

The Effect of Homnis Placenta Herbal Acupuncture on Reducing Expression of LPS-induced Arthritis Model as an Anti-inflammatory Agent (자하차약침(紫何車藥針)의 항염증능(亢炎症能)이 LPS 유발 관절염(關節炎) 치료(治療)에 미치는 영향(影響))

  • Park, Ki-Bum;Baek, Seung-Tae;Lee, Seung-Deok;Kim, Kyung-Ho;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.6
    • /
    • pp.103-115
    • /
    • 2006
  • Objectives : Rheumatoid arthritis(RA) is a systemic & a chronic inflammatory autoimmune disease . A chronic , locally destructive inflammmatory reaction in human is examplified by the synovitis present in some connective tissue disorder. The presence of a number of cytokines, $TNF-{\alpha}$, iNOS & expression of nitric oxide, NF-kB p65 activation implies an important role of cellular immune response in RA inflammatory reaction. This study was designed to evaluate on the effects of the Homnis Placenta herbal acupuncture on EX-LE201 & ST 35 reducing expression of LPS-induced arthritis model in mice. Materials and Methods : Homnis Placenta herbal acupuncture was inserted into 10 rats induced rheumatoid arthritis. The acupunctures were injected into the EX-LE201 and ST35 points. Such indexes were measured the inhibition of inducible nitric oxide synthase(iNOS) expression, nitric oxide(NO) production in vitro experiment and Tumor Necrosis $Factor-{\alpha}(TNF-{\alpha})$ & Nuclear Factor kappa $B(NF-{\kappa}B)$ p65 activation, synovial hyperplasia, angiogenesis and fibrosis in synovial membrane of knee joint of mice in vivo experiment. Results : 1.Homnis Placenta Herbal acupuncture inhibited iNOS mRNA and NO in RAW 264.7 cell of LPS-induced rheumatoid arthritis in a dose dependent manner. 2.Homnis Placenta Herbal acupuncture also showed significant inhibition of $TNF-{\alpha}$ & $NF-{\kappa}B$ p65, activation, synovial hyperplasia, angiogenesis and fibrosis in synovial membrane of knee joint of mice. Conclusion : These results suggest that Homnis Placenta Herbal acupuncture has an therapeutic effects on LPS induced-rheumatoid arthritis by inhibiting $TNF-{\alpha}$ activation.

  • PDF

Inhibitory Effect of BCG Cell-Wall Skeletons (BCG-CWS) Emulsified in Squalane on Tumor Growth and Metastasis in Mice

  • Yoo, Yung-Choon;Hata, Katsusuke;Lee, Kyung-Bok;Azuma, Ichiro
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.522-527
    • /
    • 2002
  • The antimetastatic effect of BCG-CWS, which was emulsified in an oil-in-water form with either Drakeol 6VR mineral oil (BCG-CWS/DK) or squalane (BCG-CWS/SQA), on lung metastasis produced by highly metastatic murine tumor cells, Colon26-M3.1 carcinoma cells and B16-BL6 melanoma cells, was investigated in syngeneic mice. An intravenous (i.v.) administration of BCG-CWS (100 mg/mouse) 1 day after tumor inoculation significantly inhibited tumor metastasis of both Colon26-M3.1 carcinoma and B16-BL6 melanoma cells in experimental lung metastasis models. No differences in the antitumor activity of the two oil-based formulations (BCG-CWS/DK and BCG-CWS/SQA) were obverved. However, BCG-CWS/SQA administered through subcutaneous (s.c.) route was shown to be effective only when it was consecutively injected (3 times) after tumor inoculation. An in vivo analysis for tumor-induced angiogenesis shwed that a single i.v. administration of BCG-CWS/SQA inhibited the number of tumor-induced blood vessels and suppressed tumor growth. Furthermore, the multiple administration of BCG-CWS/SQA given at on week intervals led to a significant reduction in spontaneous lung metastasis of B16-BL6 melanoma cells in a spontaneous metastasis model. These results suggest that BCG-CWS emulsified with squalane is a potent inhibitory agent of lung metastasis, and that the anti metastatic effect of BCG-CWS is related to the suppression of tumor growth and the inhibition of tumor-induced angiogenesis.

Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model

  • Kang, Woong Chol;Oh, Pyung Chun;Lee, Kyounghoon;Ahn, Taehoon;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.657-667
    • /
    • 2016
  • Critical limb ischemia (CLI) is one of the most severe forms of peripheral artery diseases, but current treatment strategies do not guarantee complete recovery of vascular blood flow or reduce the risk of mortality. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported to have a paracrine influence on angiogenesis in several ischemic diseases. However, little evidence is available regarding optimal cell doses and injection frequencies. Thus, the authors undertook this study to investigate the effects of cell dose and injection frequency on cell survival and paracrine effects. MSCs were injected at $10^6$ or $10^5$ per injection (high and low doses) either once (single injection) or once in two consecutive weeks (double injection) into ischemic legs. Mice were sacrificed 4 weeks after first injection. Angiogenic effects were confirmed in vitro and in vivo, and M2 macrophage infiltration into ischemic tissues and rates of limb salvage were documented. MSCs were found to induce angiogenesis through a paracrine effect in vitro, and were found to survive in ischemic muscle for up to 4 weeks dependent on cell dose and injection frequency. In addition, double high dose and low dose of MSC injections increased vessel formation, and decreased fibrosis volumes and apoptotic cell numbers, whereas a single high dose did not. Our results showed MSCs protect against ischemic injury in a paracrine manner, and suggest that increasing injection frequency is more important than MSC dosage for the treatment CLI.

Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis

  • Lee, Hyunsook;Kang, Kyu-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.705-712
    • /
    • 2018
  • The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). In vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a $2{\times}2$ stitched area from the $4{\times}$ object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, $IC_{50}$ values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.

Expression, Purification, and Biological Characterization of The Amino-Terminal Fragment of Urokinase in Pichia pastoris

  • Li, Jianping;Lin, Yuli;Zhuang, Hongqin;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1197-1205
    • /
    • 2013
  • Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis. Targeting the excessive activation of this system as well as the proliferation of the tumor vascular endothelial cell would be expected to prevent tumor neovasculature and halt the tumor development. In this regard, the amino-terminal fragment (ATF) of urokinase has been confirmed as effective to inhibit the proliferation, migration, and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Previous studies indicated that ATF expressed in Escherichia coli was mainly contained in inclusion bodies and also lacked posttranslational modifications. In this study, the biologically active and soluble ATF was cloned and expressed in Pichia pastoris. The recombinant protein was purified to be homogenous and confirmed to be biologically active. The yield of the active ATF was about 30 mg/l of the P. pastoris culture medium. The recombinant ATF (rATF) could efficiently inhibit angiogenesis, endothelial cell migration, and tumor cell invasion in vitro. Furthermore, it could inhibit in vivo xenograft tumor growth and prolong the survival of tumor-bearing mice significantly by competing with uPA for binding to cell surfaces. Therefore, P. pastoris is a highly efficient and cost-effective expression system for large-scale production of biologically active rATFs for potential therapeutic application.

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Essential Oil of Tridax procumbens L Induces Apoptosis and Suppresses Angiogenesis and Lung Metastasis of the B16F-10 Cell Line in C57BL/6 Mice

  • Manjamalai, A.;Kumar, M.J. Mahesh;Grace, V.M. Berlin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5887-5895
    • /
    • 2012
  • Background: To determine the effect of essential oil obtained from a traditionally used medicinal plant Tridax procumbens L, on lung metastasis developed by B16F-10 melanoma cells in C57BL/6 mice. Materials and Methods: Parameters studied were toxicity, lung tumor nodule count, histopathological features, tumor directed capillary vessel formation, apoptosis and expression levels of $P^{53}$ and caspase-3 proteins. Results: In vitro the MTT assay showed cytotoxicity was found to be high as 70.2% of cancer cell death within 24hrs for $50{\mu}g$. In vivo oil treatment significantly inhibited tumor nodule formation by 71.7% when compared with untreated mice. Formation of tumor directed new blood vessels was also found to be inhibited to about 39.5%. TUNEL assays also demonstrated a significant increase in the number of apoptotic positive cells after the treatment. $P^{53}$ and caspase-3 expression was also found to be greater in the essential oil treated group than the normal and cancer group. Conclusions: The present investigation showed significant effects of the essential oil of Tridax procumbens L in preventing lung metastasis by B16F-10 cell line in C57BL/6 mice. Its specific preventive effect on tumor directed angiogenesis and inducing effect on apoptosis warrant further studies at the molecular level to validate the significance of Tridax procumbens L for anticancer therapy.

6-Shogaol reduces progression of experimental endometriosis in vivo and in vitro via regulation of VGEF and inhibition of COX-2 and PGE2-mediated inflammatory responses

  • Wang, Dan;Jiang, Yiling;Yang, Xiaoxin;Wei, Qiong;Wang, Huimin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.627-636
    • /
    • 2018
  • Endometriosis (EM) is one of the most common gynaecological disorder affecting women in their reproductive age. Mechanisms involved in the pathogenesis of EM remains poorly understood, however inflammatory responses have been reported to be significantly involved. The efficacy of 6-shogaol on proliferation of endometriotic lesions and inflammatory pathways in experimentally-induced EM model was explored in this study. EM was stimulated in Sprague-Dawley rats by implantation of autologous endometrium onto the peritoneum abdominal wall. Separate groups were treated with 6-shogaol (50, 100 or 150 mg/kg b.wt/day) via oral gavage for one month period. Gestrinone (GTN) group received GTN (0.5 mg/kg/day) as positive control. Five weeks after implantation, the spherical volume of ecto-uterine tissues was determined. Treatment with 6-shogaol significantly reduced the implant size. Histological analysis reported atrophy and regression of the lesions. 6-shogaol administration effectively down-regulated $NF-{\kappa}B$ signaling, VEGF and VEGFR-2 (Flk-1) expression in the endometriotic lesions. Excess production of $IL-1{\beta}$ and IL-6 (pro-inflammatory cytokines), PGE2 and nitric oxide (NO) were reduced. Overall, the results of the study reveal the efficacy of 6-shogaol against endometriosis via effectively suppressing proliferation of the lesions and modulating angiogenesis and $COX-2/NF-{\kappa}B$-mediated inflammatory cascades.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

In Vivo Tumor Cell Distribution of Antibody-Endostatin Fusion Protein for Tumor-Specific Targeting and Pharmacokinetics (암세포 표적지향화를 위한 항체-엔도스타틴 융합단백질의 체내동태 및 종양으로의 이행성)

  • Kang, Young-Sook;Lee, Na-Young
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.287-292
    • /
    • 2003
  • A novel antitumor agent, antibody-endostatin fusion protein $(anti-HER2/neu\;IgG3C_H3-Endostatin,\;AEFP)$ formed by genetic engineering procedure from antibody (Ab) which specifically targets to tumor cells ad angiogenesis inhibitor, endostatin (Endo) that has excellent antitumor effect, minimizes the toxicity of normal cells and selectively kills only tumor cells. The purpose of this study is to evaluate the phamacokinetic parameters and to analyze the localization of AEFP. After an intravenous injection of $150\;{\mu}l\;(5\;{\mu}Ci)\;[^{125}I]Ab,\;[^{125}I]AEFP$ to mice, blood was collected though retroorbital plexus from 15 min to 2880 min. Following the jugular vein injetion of $150\;{\mu}l\;(10\;{\mu}Ci)\;[^{125}I]Endo$, blood was collected by the use of carotid artery cannulation from 0.25 min to 30 min. Consequently, Endo was very rapidly removed from plasma compartment within 30 min. On the other hand, AEFP similar to Ab was slowly cleared from plasma. Also, Endo was metabolized about 40% within 30 min. However, AEFP was shown to metabolize less than 10% within 2880 min. The organ distribution of Endo was in order kidney, lung, spleen. Both Ab and AEFP were localized in order spleen, kidney, liver. Futhermore the tumor/blood distribution ratio of AEFP at 96 hours after injection is about 20 times higher than it of Endo at one hour after injection. In conclusion, these studies demonstrate that the anti-cancer or suppression of angiogenesis effect of Endo may be improved by the use of AEFP because the longer half life and stability of AEFP is able to selectively target antigens expressed on tumors.