• Title/Summary/Keyword: in vitro translation

검색결과 102건 처리시간 0.026초

Effects of Gut Extract Protein and Insulin on Glucose Uptake and GLUT 1 Expression in HC 11 Mouse Mammary Epithelial Cells

  • Myung, K.H.;Ahn, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권8호
    • /
    • pp.1210-1214
    • /
    • 2002
  • The large and rapid changes of glucose utilization in lactating mammary tissue in response to changes in nutritional state must be largely related by external signal of insulin. This also must be related with the quantity and composition of the diet in vivo. To characterize the mode of gut extract protein with insulin, in vitro experiment was conducted with HC11 cells. The gut extract protein has not only the same effect as insulin alone but also the synergistic effect with insulin in 2-Deoxy[3H] glucose uptake. Although the gut extract did not modulates glucose uptake via increasing the rate of translation of the GLUT1 protein, northern blot analysis indicated that the gut extract protein increased the expression of GLUT1 mRNA by a threefold and also there was a dose-dependent increase in the expression of GLUT1 mRNA. The gut extract protein is therefore shown to be capable of modulating glucose uptake by transcription level with insulin in HC 11 cells.

Flower-Inducing Activity in the Phloem Exudata and Gene Expression Specific to Photoperiodic Floral Induction in Pharbitis Cotyledons

  • Kim, Kang-Chang;Lee, Jin-Hwan;Her, Yoon-Kang;Maeng, Jue-Son
    • Journal of Plant Biology
    • /
    • 제39권4호
    • /
    • pp.257-263
    • /
    • 1996
  • Flower-inducing activity in the phloem exudata of Pharbitis cotyledons was investigated using the bioassay of Pharbitis and Lemna. By SDS-PAGE and 2-D gel electrophoresis of the phloem exudate, two polypeptides of 11 kDa and of approximately 32 kDa (pI 6.9) showing qualitative changes during the flower induction were detected. A polypeptide of approximately 20 kDa (pI 4.8) specifically labeled in vivo with [35S]methionine was found during the inductive dark period in Pharbitis cotyledon tissues. The polypeptide of the equivalent molecular mass and with the identicl pI value was also detected by in vitro translation assay. Thus, it is assumed that the 20 kDa polypeptide plays a role in the process of flower induction in Pharbitis cotyledons.

  • PDF

Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development

  • Christopher Oelkrug
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권2호
    • /
    • pp.73-82
    • /
    • 2024
  • DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.

Transfer RNA Acceptor Stem Determinants for Specific Aminoacylation by Class II Aminoacyl-tRNA Synthetases

  • Musier, Karin
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.525-535
    • /
    • 1998
  • A critical step in the faithful translation of genetic information is specific tRNA recognition by aminoacyl-tRNA synthetases. These enzymes catalyze the covalent attachment of particular amino acids to the terminal adenosine of cognate tRNA substrates. In general, there is one synthetase for each of the twenty amino acids and each enzyme must discriminate against all of the cellular tRNAs that are specific for the nineteen noncognate amino acids. Primary sequence information combined with structural data have resulted in the division of the twenty synthetases into two classes. In recent years, several high-resolution co-crystal structures along with biochemical data have led to an increased understanding of tRNA recognition by synthetases of both classes. The anticodon sequence and the amino acid acceptor stem are the most common locations for critical recognition elements. This review will focus on acceptor stem discrimination by class II synthetases. In particular, the results of in vitro aminoacylation assays and site-directed and atomic group mutagenesis studies will be discussed. These studies have revealed that even subtle atomic determinants can provide signals for specific tRNA aminoacylation.

  • PDF

miR-421, miR-155 and miR-650: Emerging Trends of Regulation of Cancer and Apoptosis

  • Farooqi, Ammad Ahmad;Qureshi, Muhammad Zahid;Coskunpinar, Ender;Naqvi, Syed Kamran-Ul-Hassan;Yaylim, Ilhan;Ismail, Muhammad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.1909-1912
    • /
    • 2014
  • It is becoming progressively more understandable that between transcription and translation there lies another versatile regulator that quantitatively controls the expression of mRNAs. Identification of miRNAs as key regulators of wide ranging signaling cascades and modulators of different cell-type and context dependent activities attracted basic and clinical scientists to study modes and mechanisms in details. In line with this approach overwhelmingly increasing in vivo and in vitro studies are deepening our understanding regarding miR-421, mir-155 and miR-650 mediated regulation of cellular activities. We also attempt to provide an overview of long non coding RNAs.

Genetic Organization of the Recombinant Bacillus pasteurii Urease Genes Expressed in Escherichia coli

  • Kim, Sang-Dal;Hausinger, Robert P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.108-112
    • /
    • 1994
  • The genetic organization of the urease gene cluster from an alkalophilic Bacillus pasteurii was determined by subcloning and Tn5 transposon mutagenesis of a 10.7 kilobasepair cloned fragment. A region of DNA between 5.0 and 6.0 kb in length is necessary for urease activity. In vitro transcription-translation analysis of transposon insertion mutants of the cloned urease genes demonstrated that the major ($M_r$ 67,000) and minor ($M_r$ 20,000) structural peptides of urease are encoded at one end of the urease gene cluster and at least 3 additional polypeptides are encoded by adjacent DNA sequences.

  • PDF

Engineering the Extracellular Matrix for Organoid Culture

  • Jeong Hyun Heo;Dongyun Kang;Seung Ju Seo;Yoonhee Jin
    • International Journal of Stem Cells
    • /
    • 제15권1호
    • /
    • pp.60-69
    • /
    • 2022
  • Organoids show great potential in clinical translational research owing to their intriguing properties to represent a near physiological model for native tissues. However, the dependency of organoid generation on the use of poorly defined matrices has hampered their clinical application. Current organoid culture systems mostly reply on biochemical signals provided by medium compositions and cell-cell interactions to control growth. Recent studies have highlighted the importance of the extracellular matrix (ECM) composition, cell-ECM interactions, and mechanical signals for organoid expansion and differentiation. Thus, several hydrogel systems prepared using natural or synthetic-based materials have been designed to recreate the stem cell niche in vitro, providing biochemical, biophysical, and mechanical signals. In this review, we discuss how recapitulating multiple aspects of the tissue-specific environment through designing and applying matrices could contribute to accelerating the translation of organoid technology from the laboratory to therapeutic and pharmaceutical applications.

Structural Studies on IRES 4-2 Domain of Foot-and-mouth Disease Virus

  • Kim, Young-Mee;Yoo, Jun-Seok;Cheong, Hae-Kap;Lee, Chul-Hyun;Cheong, Chae-Joon
    • 한국자기공명학회논문지
    • /
    • 제7권2호
    • /
    • pp.89-97
    • /
    • 2003
  • Foot-and-mouth disease virus (FMDV) belongs to the aphthovirus genus within the picornavirus which has a single copy of a positive sense RNA. The translation initiation process of FMDV occurs by a cap-independent mechanism directed by a highly structured element (∼435 nt) termed an internal ribosome entry site (IRES). We have designed and prepared FMDV 4-2 RNA (28nt) by in vitro transcription. The 2D NMR data revealed that FMDV 4-2 IRES domain RNA has a flexible loop and bulge conformation. In further study, we need to make an isotope labeled RNA sample and conduct 3D NMR experiments to completely determine the 3D structure. This study may establish a new drug design strategy to treat foot-and mouth disease.

  • PDF

Influence of Coronoid Fracture on Elbow Stability: A Kinematic Study Based on New Clinical Relevant Fracture Classification

  • Jeon, In-Ho;Joaquin, Sanchez-Sotelo;Steinmann, Scott;Zhao, Kristin;An, Kai-Nan;Morrey, Bernard F.
    • 대한견주관절학회:학술대회논문집
    • /
    • 대한견주관절학회 2009년도 제17차 학술대회
    • /
    • pp.128-129
    • /
    • 2009
  • This study suggests isolated Type IV-MO or Type IV-LO fractures could be treated with nonsurgical treatment because they do not interfere with normal elbow kinematics. Valgus and external rotation instability were influenced by total articular surface, however, posterior and proximal translation were influenced by isolated articular surface involvement of coronoid. Further clinical studies are warranted to validate these in vitro findings.

  • PDF

Cytochrome C methylation: Current Knowledge of its Biological Significance

  • Park, Kwang-Sook;Frost, Blaise F.;Lee, Hyang-Woo;Kim, Sang-Duk;Paik, Woon-Ki
    • Archives of Pharmacal Research
    • /
    • 제11권1호
    • /
    • pp.7-13
    • /
    • 1988
  • The yeast cytochrome c gene has been recloned, and the resulting cytochrome c mRNA has been translated in rabbit reticulocyte lysate translation system. The newly synthesized apocytochrome c could be methylated by exogenously added cytochrome c-lysine N-methyltransferase. Enzymatic methylation of in vitro synthesized apocytochrome c was found to facilitate specifically its import into mitochondria of yeast, but not of rat liver.

  • PDF