• Title/Summary/Keyword: in vitro transfection

Search Result 142, Processing Time 0.032 seconds

Reduction of Migration and Invasion Ability of nm23-H1 Transfected U87MG (nm23-H1 유전자가 주입된 U87MG 세포의 이동능과 침윤능의 감소)

  • Paek, Yun-Woong
    • Journal of Korean Biological Nursing Science
    • /
    • v.7 no.1
    • /
    • pp.47-56
    • /
    • 2005
  • nm23-H1 gene expression has been inversely correlated with tumor metastatic potential in certain tumors including melanomas, breast carcinomas, and hepatocellular carcinomas. However, its role with respect to the invasive behavior of central nervous system tumors has scarcely been addressed Because cell motility and invasion plays an essential role in metastatic dissemination, we have studied whether motile human glioma cell(U87MG) transfected with nm23-H1 complementary DNA have any alterations in their ability to migrate and invade. There was no significant changes in the shape and size of the cells following nm23-H1 transfection. The role of nm23-H1 in glioma migration and invasion have been evaluated by in vitro simple scratch technique and brain slice invasion model Basal migration ability of nm23-H1 transfectants cell(U87MG-pEGFP-nm23) were lesser than U87MG. Accordingly, U87MG-pEGFP-nm23 didn't migrate away apparently from the tumors implanted site comparing U87MG in brain slice invasion model. These results suggest that nm23-H1 may play an important role in suppressing the human glioma migration and invasion.

  • PDF

PKB phosphorylates p27, impairs its nuclear import and opposes p27-mediated G1 arrest

  • Lee, Jin-Hwa;Liang, Ji-Yong;Slingerland, Joyce M.
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2002.09a
    • /
    • pp.36-39
    • /
    • 2002
  • PKB activation may contribute to resistance to antiproliferative signals and breast cancer progression in part by impairing nuclear import and action of p27. PKB transfection caused cytoplasmic p27 accumulation and cytokine resistance. The nuclear localization region of p27 contains a PKB/Akt consensus site at threonine 157 and p27 phosphorylation by PKB impaired its nuclear import in vitro. PKB/Akt phosphorylated wild type p27 but not p27T157A. PKB activation led to cytoplasmic mislocalization of p27WT but p27T157A remained nuclear. In PKB activated cells, p27WT failed to cause Gl arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52/128) of primary human breast cancers in association with PKB activation. Thus, we show a novel mechanism whereby PKB impairs p27 function that is associated with an aggressive phenotype in human breast cancer.

  • PDF

Efficient Generation of BLCL Expressing Foreign Antigen as Antigen-presenting Cells with Recombinant Retroviruses

  • Hyun-Il Cho;Soon-Young Pail;Il-Hoan OH;Kyun-Jung Ahn;Dong-Wook Kim
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Epstein-Barr Virus(EBV)-transformed lymphoblastoid B cell lines, BLCL which expresse antigens, are potential antigen-presenting cells(APCs) for the induction of CTL in vitro. However transfection of BLCLs with subsequent selection by antibiotics is notoriously difficult because plating efficiencies of BLCLsare reported to be 1% or less. To generated stable transfectants of BLCLs we produced high titers of retroviruess encoding pp 65 antigen of human cytomegalovirus of foreign antigens and trans-duced them of BLCLs. The pp 65 gene was cloned into the retroviral vector pLXSN. The recombinant retroviral vector was transfected to ecotropic packaging cell line, CP&E86, and this polyclonal recom-binant retrovirus was transduced to PA317 that is amphotropic pakaging cell line. The titers of colned PA317 amphotropic retroviruses ranged from 5 to $\times$10$^{6}$ colony forming units (CFU)per ml (CFU/ml) We performed three rounds of consecutive transductions to BLCLs in order to improve the clon-ing effieiencies. The expression of recombinant HCMV-pp65 antigen was more than 20% after the final transduction. THe third-transduced BLCLs were easily selected in optimal concentration of G418. BLCLs expressing foreign antigens could be used as target cells for CTL assay and/or as APCs for induction of in vitro CTL responses specific for viral and tumor antigens.

  • PDF

Quantifiable Downregulation of Endogenous Genes in Agaricus bisporus Mediated by Expression of RNA Hairpins

  • Costa, Ana S.M.B.;Thomas, D. John I.;Eastwood, Daniel;Cutler, Simon B.;Bailey, Andy M.;Foster, Gary D.;Mills, Peter R.;Challen, Michael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.271-276
    • /
    • 2009
  • Functional gene studies in the cultivated white button mushroom Agaricus bisporus have been constrained by the absence of effective gene-silencing tools. Using two endogenous genes from A. bisporus, we have tested the utility of dsRNA hairpin constructs to mediate downregulation of specific genes. Hairpin constructs for genes encoding orotidine 5'-monophosphate decarboxylase (URA3) and carboxin resistance (CBX) were introduced into A. bisporus using Agrobacteriummediated transfection. Although predicted changes in phenotype were not observed in vitro, quantitative-PCR analyses indicated unambiguously that transcripts in several transformants were substantially reduced compared with the non-transformed controls. Interestingly, some hairpin transformants exhibited increased transcription of target genes. Our observations show that hairpin transgenic sequences can mediate downregulation of A. bisporus endogenous genes and that the technology has the potential to expedite functional genomics of the mushroom.

Lysophosphatidic Acid-Induced TWIST1 and Slug Expression in Oral Cancer Cell Invasion

  • Cho, Kyung Hwa
    • Journal of dental hygiene science
    • /
    • v.17 no.5
    • /
    • pp.433-438
    • /
    • 2017
  • Relative to its incidence, oral cancer has serious negative social effects. The exact causes of oral cancer have not been clarified, but many studies have implicated smoking and drinking. However, the fundamental mechanism of oral cancer causation has yet to be elucidated. Lysophosphatidic acid (LPA) augments epithelial mesenchymal transition (EMT) and development of various cancer cells. However, a detailed mechanistic explanation for LPA-induced EMT and the effects of EMT-promoting conditions on oral squamous cell carcinoma development remain elusive. In the present study, a quantitative reverse transcription polymerase chain reaction was used to analyze TWIST1, Slug, E-cadherin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcript expression. Immunoblotting was used to analyze TWIST1, Slug, E-cadherin, and GAPDH protein expression. siRNAs were used to silence TWIST1 and Slug transcript expression. A matrigel-coated in vitro invasion insert was used to analyze oral cancer cell invasion. The results of the present study show that the expression levels of TWIST1 and Slug, which are EMT factors, were increased by LPA treatment in YD-10B oral squamous cell carcinoma. Conversely, E-cadherin expression was significantly reduced. In addition, transfection of the cells with TWIST1 and Slug siRNA strongly inhibited LPA-induced oral cancer cell invasion. The present study shows that TWIST1 and Slug mediate LPA-induced oral cancer cell EMT and invasiveness. The present study confirmed the mechanism by which LPA promotes oral cancer cell development, with TWIST1 and Slug providing novel biomarkers and promising therapeutic targets for oral cancer cell development.

Identification of Ku70/Ku80 as ADD1/SREBP1c Interacting Proteins

  • Lee, Yun Sok;Koh, Hae-Young;Park, Sang Dai;Kim, Jae Bum
    • Animal cells and systems
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • In vertebrates, multisubunit cofactors regulate gene expression through interacting with cell-type- and gene-specific DNA-binding proteins in a chromatin-selective manner. ADD1/SREBP1c regulates fatty acid metabolism and insulin-dependent gene expression through binding to SRE and E-box motif with dual DNA binding specificity. Although its transcriptional and post-translational regulation has been extensively studied, its regulation by interacting proteins is not well understood. To identify cellular proteins that associate with nuclear form of ADD1/SEBP1c, we employed the GST pull-down system with Hela cell nuclei extract. In this study, we demonstrated that Ku proteins interact specifically with ADD1/SREP1c protein. GST pull-down combined with peptide sequencing analysis revealed that Ku80 binds to ADD1/SREBP1c in vitro. Additionally, western blot analysis showed that Ku70, a heterodimerizing partner of Ku80, also associates with ADD1/SREBP1c. Furthermore, co-transfection of Ku70/Ku80 with ADD1/SREBP1c enhanced the transcriptional activity of ADD1/SREBP1c. Taken together, these results suggest that the Ku proteins might be involved in the lipogenic and/or adipogenic gene expression through interacting with ADD1/SREBP1c.

ZAS3 represses NFκB-dependent transcription by direct competition for DNA binding

  • Hong, Joung-Woo;Wu, Lai-Chu
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.807-812
    • /
    • 2010
  • $NF{\kappa}B$ and ZAS3 are transcription factors that control important cellular processes including immunity, cell survival and apoptosis. Although both proteins bind the ${\kappa}B$-motif, they produce opposite physiological consequences; $NF{\kappa}B$ activates transcription, promotes cell growth and is often found to be constitutively expressed in cancer cells, while ZAS3 generally represses transcription, inhibits cell proliferation and is downregulated in some cancers. Here, we show that ZAS3 inhibits $NF{\kappa}B$-dependent transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Transient transfection studies show that N-terminal 645 amino acids is sufficient to repress transcription activated by $NF{\kappa}B$, and that the identical region also possesses intrinsic repression activity to inhibit basal transcription from a promoter. Finally, in vitro DNA-protein interaction analysis shows that ZAS3 is able to displace $NF{\kappa}B$ by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. It is conceivable that ZAS3 has therapeutic potential for controlling aberrant activation of $NF{\kappa}B$ in various diseases.

Optimization of Aerosolizable Messenger RNA Lipid Nanoparticles for Pulmonary Delivery

  • Se-Hee Lee;Jong Sam Lee;Dong-Eun Kim;Keun-Sik Kim
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.231-241
    • /
    • 2023
  • Messenger RNA (mRNA)-based vaccines and treatments have recently emerged as a promising strategy. Naked mRNA presents various limitations for direct delivery. Therefore, in this paper, Lipid Nanoparticles (LNPs) were utilized for the delivery of mRNA. Lipid nanoparticle (LNP) mRNA systems are highly effective as vaccines, but their efficacy for pulmonary delivery has not yet been fully established. Additionally, research on effective delivery systems and administration methods for vaccines is required to resolve the stability and degradation issues associated with naked mRNA delivery. This study aimed to determine mRNA delivery efficiency via the inhalation of a lipid nanoparticle (LNP) formulation designed specifically for pulmonary delivery. To this purpose, we built a library of seven LNP configurations with different lipid molar and N/P ratios and evaluated their encapsulation efficiency using gel retardation assay. Among the tested LNPs, LNP1, LNP2-2, and LNP3-2 demonstrated high transfection efficiency in vitro based on FACS analyses luciferase assays, and intracellular accumulation tests. The mRNA delivery efficiencies of the selected LNPs after inhalation and intravenous injection were compared and evaluated. LNP2-2 showed the highest mRNA expression in healthy mouse lungs when aerosolized and was found to be non-toxic. These results indicate that LNP2-2 is a promising carrier for lung mRNA delivery via inhalation.

Roles of Steroid Receptor Coactivator-3 and TTF-1 in Lung Development and Lung Cancer (폐의 분화와 폐암에서 SRC-3와 TTF-I의 역할)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Steroid receptor coactivators (SRC) are transcriptional coactivators. Among SRCs, SRC-3 is the most studied in relation to different types of tumors. However, the role of SRC-3 in early lung development and lung cancer has not been well studied. The expression profiles of SRC-3 showed that SRC-3 contributed to bronchial and alveolar development in embryonic lung development. SRC-3 was strongly expressed in Clara cells and type II alveolar cells during fetal lung development (E17.5- E18.5), and SRC-3 was expressed in both cell types in the adult lung. TTF-1 was expressed in the lungs of heterozygote SRC-3 mice and Clara cell-specific-CCSP-TAg tumor mice, along with SRC-3 expression. The expression of TTF-1 was localized at transformed Clara cells and multifocal adenocarcinomas in lung cancer mice. However, SRC-3 was not expressed in the multifocal adenocarcinomas, suggesting that SRC-3 might not be involved in the invasiveness of lung cancer. Cotransfection of TTF-1 in Clara cell-specific mtCC cell lines resulted in significant activation of CCSP expression. However, cotransfection of SRC-3 had no significant effects on transient transfection. These in vivo and in vitro results suggest that SRC-3 does not play a significant role in lung tumor progression. In conclusion, SRC-3 is involved in bronchial and alveolar development in fetal and adult lungs, but it does not play an important role in the progression of Clara cell-derived lung cancer.

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.