• Title/Summary/Keyword: in vitro techniques

Search Result 355, Processing Time 0.033 seconds

Studies on Computer Optimization Techniques for Hydrophilic Vehicle Compositions

  • Lee, Chi-Ho;Shin, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.185-196
    • /
    • 1988
  • The inflence of hydrophilic vehicles on percutaneous absorption rate of griseofulvin was studied using intact skin of full thickness of hairless rat. The in vitro absorption rates were used as the characteristics for deciding the optimum formula of ointment vehicles. The optimum formula of vehicle compositions for maximum absorption rate was obtained from the polynomial regression equation and the two graphical techniques, contour graph and partial derivative graph. It was composed of sodium lauryl sulfate (1.65 W /W%), white petrolatum (16.5 W /W%), propylene glycol (12.0 W /W%), and stearyl alcohol (19.6W /W%). The experimental value obtained from the optimum formula and the prediction value were 33.99 and 33.87 ${\mu}g/\sqrt{min}$, respectively. From these results, it was believed that optimum formula for semisolid dosage forms could be obtained from the application of the optimization technique used in this study.

  • PDF

The Antifungal Activities of some 6-[N-(halophenyl)amino]-7-Chloro-5,8-Quinolinediones against Candida Species

  • Ryu, Chung-Kyu;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.483-486
    • /
    • 1994
  • A series of 6-[N-(halophenyl)amino]-7-chloro-5, 8-quinolinedione derivatives 1-10 were tested for antifungal susceptibilities, in vitro, aginst pathogenic Candida species such as C. ablbicans, C glabrata, C. krusei, C. parapsilosis and C. tropicalis. The MICs were determined by the standard macrodilution techniques, according to the NCCLS 1992 guidelines. The 6-[N-(halo-standard macrodilution techniques, according to the NCCLS 1992 gidelines. The 6-[N-(halo-phenyl)amino]-7-chloro-5, 8-quinolinedione derivatives showed generally potent antifungal activities against pathogenic Candida species. Among them, derivative 1, 2, 5, and 7 showed more potent antifungal activities than kietoconazole. All derivatives 1-10 had specially potent activities against C. torpicalis. Derivative 1 and 2 containing 9N-3, 4-dihalo-phenyl)amino moiety exhibited the potent antifugal activities. Derivative 2 with (3, 4-dichlorophenyl)amino substitutent was the most effetive in preventing the growth of Candida species at MICs 4.mu.g/ml respectively.

  • PDF

A review of forest trees micropropagation and its current status in Korea (국내 임목류 기내증식 연구현황 및 전망)

  • Moon, Heung-Kyu;Kim, Yong-Wook;Park, So-Young;Han, Mu-Seok;Yi, Jae-Seon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.343-356
    • /
    • 2010
  • Plant micropropagation techniques include bud cultures using apical or axillary buds, organogenesis through callus culture or adventitious bud induction, and somatic embryogenesis. In Korea Forest Research Institute (KFRI), the first tissue culture trial in woody plant was initiated from the bud culture of hybrid poplars (Populus alba x P. glandulosa) in 1978. Since then several mass propagation techniques have developed from conifer and hardwood species, resulting in allowing practical application to Poplars, Birches and some oak species. In addition, useful micropropagation and genetic resources conservation techniques were established in some rare and endangered tree species including Abeliophyllum distichum. Among various in vitro propagation techniques, somatic embryogenesis is known to be the most efficient plant regeneration system. Since the first somatic embryo induction was reported in Tilia amurensis by KFRI in 1986, various protocols for direct or indirect somatic embryogenesis systems have developed in conifer and hardwood species including Larix leptolepis, Pinus rigida x P. taeda F1, Kalopanax septemlobus and Liliodendron tulipifera, etc. However, most of these technologies have been developed using juvenile tissues, i.e. immature zygotic embryos or mature embryos. Therefore it has been difficult to directly application to tree breeding program due to their unproven genetic background. Recently remarkable progresses and new approaches have been achieved in mature tree somatic embryogenesis. In this article we reviewed several micropropagation techniques, which have been mainly developed by KFRI and recent international progresses.

Storage of laboratory animal blood samples causes hemorheological alterations : Inter-species differences and the effects of duration and temperature

  • Nemeth, Norbert;Baskurt, Oguz K.;Meiselman, Herbert J.;Kiss, Ferenc;Uyuklu, Mehmet;Hever, Timea;Sajtos, Erika;Kenyeres, Peter;Toth, Kalman;Furka, Istvan;Miko, Iren
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • Hemorheological results may be influenced by the time between blood sampling and measurement, and storage conditions (e.g., temperature, time) during sample delivery between laboratories may further affect the resulting data. This study examined possible hemorheological alterations subsequent to storage of rat and dog blood at room temperature ($22^{\circ}C$) or with cooling ($4{\sim}10^{\circ}C$) for 2, 4, 6, 24, 48 and 72 hours. Measured hemorheological parameters included hematological indices, RBC aggregation and RBC deformability. Our results indicate that marked changes of RBC deformability and of RBC aggregation in whole blood can occur during storage, especially for samples stored at room temperature. The patterns of deformability and aggregation changes at room temperature are complex and species specific, whereas those for storage at the lower temperature range are much less complicated. For room temperature storage, it thus seems logical to suggest measuring rat and dog cell deformability within 6 hours; aggregation should be measured immediately for rat blood or within 6 hours for dog blood. Storage at lower temperatures allows measuring EI up to 72 hours after sampling, while aggregation must be measured immediately, or if willing to accept a constant decrease, over 24~72 hours.

Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report

  • Garagiola, Umberto;Grigolato, Roberto;Soldo, Rossano;Bacchini, Marco;Bassi, Gianluca;Roncucci, Rachele;De Nardi, Sandro
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.2.1-2.9
    • /
    • 2016
  • Background: We reviewed the biological and mechanical properties of porous hydroxyapatite (HA) compared to other synthetic materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) was also evaluated to estimate its efficacy with clinical and radiological assessments. Method: A systematic search of the electronic literature database of the National Library of Medicine (PubMed-MEDLINE) was performed for articles published in English between January 1985 and September 2013. The inclusion criteria were (1) histological evaluation of the biocompatibility and osteoconductivity of porous HA in vivo and in vitro, (2) evaluation of the mechanical properties of HA in relation to its porosity, (3) comparison of the biological and mechanical properties between several biomaterials, and (4) clinical and radiological evaluation of the precision of CAD/CAM techniques. Results: HA had excellent osteoconductivity and biocompatibility in vitro and in vivo compared to other biomaterials. HA grafts are suitable for milling and finishing, depending on the design. In computed tomography, porous HA is a more resorbable and more osteoconductive material than dense HA; however, its strength decreases exponentially with an increase in porosity. Conclusions: Mechanical tests showed that HA scaffolds with pore diameters ranging from 400 to $1200{\mu}m$ had compressive moduli and strength within the range of the human craniofacial trabecular bone. In conclusion, using CAD/CAM techniques for preparing HA scaffolds may increase graft stability and reduce surgical operating time.

Distance of insertion points in a mattress suture from the wound margin for ideal primary closure in alveolar mucosa: an in vitro experimental study

  • Lee, Won-Ho;Kuchler, Ulrike;Cha, Jae-Kook;Stavropoulos, Andreas;Lee, Jung-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.189-198
    • /
    • 2021
  • Purpose: This study was conducted to determine how the distance of the near insertion points in a vertical mattress suture from the wound margin influences the pattern of primary closure in an in vitro experimental model. Methods: Pairs of 180 porcine gingival and alveolar mucosa samples were harvested from 90 pig jaws and fixed to a specially designed model. A vertical mattress suture was performed with the near insertion point at 3 different distances from the wound margin (1-, 3-, and 5-mm) on both the gingival and mucosal samples (6 groups; n=30 for each group). The margin discrepancy and the presence of epithelium between the wound margins were measured on histologic slides. Results: The margin discrepancy decreased significantly as the near insertion point became closer to the wound margin both in mucosal tissue (0.241±0.169 mm, 0.945±0.497 mm, and 1.306±0.773 mm for the 1-, 3-, and 5-mm groups, respectively) and in gingival tissue (0.373±0.304 mm, 0.698±0.431 mm, and 0.713±0.691 mm, respectively). The frequency of complications of wound margin adaptation reduced as the distance of the near insertion point from the wound margin decreased both in the mucosal and gingival tissues. Conclusions: Placing the near insertion point close to the wound margin enhances the precision of wound margin approximation/adaptation using a vertical mattress suture.

Cryopreservation of Forest Tree Seeds: A Mini-Review

  • Gantait, Saikat;Kundu, Suprabuddha;Wani, Shabir Hussain;Das, Prakash Kanti
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.311-322
    • /
    • 2016
  • Since forest trees form the basis of forest ecosystem, their prolong subsistence is crucial for various flora and fauna. The foremost challenges to sustain the forest ecosystem comprise of the declining forest tree population accompanied with structural changes due to afforestation and exploitation of forest area, environment changes, pests, pollution, and introgressive hybridization. For ex situ conservation approach, in vitro techniques encompass basic role for conserving tree genetic resources, predominantly where natural propagules like recalcitrant seed might not be appropriate for long-term conservation. The practice includes restricted growth techniques, conventional micropropagation, production and storage of synthetic seeds, and cryopreservation. Even though these practices have been applied chiefly to herbaceous species, but recently, woody species were also focused upon. Key conceptions, challenges and techniques for forest tree seed conservation are discussed briefly in this review with special emphasis on some successful cryopreservation approaches for long-term storage.

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

Effect of Medium Composition on in vitro Plant Root Regeneration from Axillary Buds of Cassava (Manihot esculenta Crantz) (카사바 액아배양 시 배지조성이 기내 식물체 발근에 미치는 영향)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.24-24
    • /
    • 2021
  • The Cassava (Manihot esculenta Crantz) is one of the major food crops in the tropical or subtropical regions. Recently, clean planting materials of improved cassava cultivars are in high demand. Problems in the propagation of cassava are virus vulnerable and low rates of seed germination. Thus, the study was undertaken to develop an efficient in vitro mass propagation protocol of Manihot esculenta Crantz. So we tried to optimize protocols for mass production from axillary buds of Cassava. Young and actively growing stem segments were excised from adult plants of cassava. Samples were cut into a 3~4 cm nodal segments with axillary buds, and cultivated in the different medium supplemented with various plant growth regulators for 4 weeks. For shoot multiplication, axillary buds approximately 1 cm in length were taken from in vitro derived shoots and subcultured. After 4~6 weeks, the shoot generation rate showed 55.6%. The shoot number and its length was 1.0/explant and 2.3 cm in the most favorable medium composition. The auxin β-indolebutyric acid(IBA) 0~2.0 mg/L was proved to be effective on root development. Plantlets with fibrous roots easily generated tuberous roots in vitro. The tuberous roots were induced only when both kinetin and IBA were used in combination. after 8 weeks, the root generation rate showed 100%. The root number and its length was 17.2/explant and 2.2 cm in the most promising medium composition. Our experiments confirmed that in vitro growth and multiplication of plantlets could depend on its reaction to the different medium composition, and this micropropagation techniques could be a useful system for healthy and vigorous plant production.

  • PDF

Chitosan Nanoparticles as a New Delivery System for the Anti-HIV Drug Zidovudine

  • Dahmane, El Montassir;Rhazi, Mohammed;Taourirte, Moha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1333-1338
    • /
    • 2013
  • Chitosan-based nanoparticles (CSNP) were prepared through ionic cross-linking and gelation of chitosan (CS) by tripolyphosphate (TPP). CS properties such as molecular weight, and preparation conditions were screened and the resulting nanoparticles were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained particles were consistently spherical with an overall diameter of approximately $107{\pm}20$ nm. They were successfully used as a carrier for Zidovudine, an anti-human immunodeficiency virus (HIV) which, to our knowledge, is novel. The encapsulation ability, loading capacity, and controlled release behavior for these CSNP was evaluated. Results indicated that their intrinsic properties were strongly affected by properties inherent to CS such as molecular weight, and by the preparation condition, such as cross-linking density, which depends on the concentration of the cross-linker. In vitro release tests for the entrapped zidovudine showed that the CNNP provided a continuous release that can last upwards 20 h.