• Title/Summary/Keyword: in vitro release

Search Result 825, Processing Time 0.025 seconds

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

Bioequivalence of Pinatos Capsule 10 mg to Ketas Capsule 10 mg (Ibudilast 10 mg) (케타스 캡슐 10밀리그램(이부딜라스트 10 밀리그램)에 대한 피나토스 캡슐 10밀리그램의 생물학적동등성)

  • Kang, Hyun-Ah;Kim, Se-Mi;Kang, Min-Sun;Yoo, Dong-Jin;Lee, Sang-No;Kwon, In-Ho;Yoo, Hee-Doo;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • Ibudilast, 3-isobutyryl-2-isopropyrazolo[1,5-a]pyridine, is a nonselective inhibitor of cyclic nucleotide phosphodiesterase (PDE). It preferentially inhibits PDE 3A, PDE4, PDE10 and PDE11 as well as a number of the other PDE families, albeit to a lesser extent. Ibudilast is used clinically to treat bronchial asthma and cerebrovascular disorders. Thes e clinical uses are based on the ability of ibudilast to inhibit platelet aggregation, improve cerebral blood flow and attenuate allergic reactions. The purpose of the present study was to evaluate the bioequivalence of two ibudilast capsules, Ketas capsule (Handok Pharmaceuticals Co., Ltd.) and Pinatos capsule (Sam Chun Dang Pharm. Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The in vitro release of ibudilast from the two ibudilast formulations was tested using KP Apparatus method with various dissolution media. Twenty six healthy male subjects, 23.31${\pm}$1.09 years in age and 70.45${\pm}$8.51 kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After a single capsule containing 10 mg as ibudilast was orally administered, blood samples were taken at predetermined time intervals and the concentrations of ibudilast in serum were determined using HPLC/UV detector. The dissolution profiles of two formulations were similar in all tested dissolution media. The pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated, and computer programs (Equiv Test and K-BE Test 2002) were utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, Ketas, were 6.99%, -2.48% and 9.93% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log 0.8791~log 1.1861 and log 0.8347~log 1.1199 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Pinatos capsule was bioequivalent to Ketas capsule.

Bioequivalence of Cadilan Tablet 12.5 mg to Dilatrend® Tablet 12.5 mg (Carvedilol 12.5 mg) (딜라트렌 정 12.5밀리그람(카르베딜롤 12.5밀리그람)에 대한 카딜란 정 12.5밀리그람의 생물학적동등성)

  • Kim, Se-Mi;Shin, Sae-Byeok;Kim, Ju-Hwan;Kwon, In-Ho;Kim, Yong-Hee;Lee, Sang-No;Cho, Hea-Young;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.413-419
    • /
    • 2008
  • Carvedilol, is a nonselective $\beta$-blocking agent and it also has vasodilating properties that are attributed mainly to its blocking activity at ${\alpha}_1$-receptors. The purpose of the present study was to evaluate the bioequivalence of two carvedilol tablets, $Dilatrend^{(R)}$ tablet 12.5 mg (Chong Kun Dang Pharmaceutical Co., Ltd.) and Cadilan tablet 12.5 mg (KyungDong Pharmaceutical. Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of carvedilol from the two carvedilol formulations in vitro was tested using KP VIII Apparatus II method with pH 4.5 dissolution medium. Thirty two healthy male subjects, $25.00{\pm}3.09$ years in age and $70.71{\pm}11.35\;kg$ in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After a single tablet containing 12.5 mg as carvedilol was orally administered, blood samples were taken at predetermined time intervals and the concentrations of carvedilol in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar in the tested dissolution medium. The pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Dilatrend^{(R)}$ tablet 12.5 mg, were 4.66%, 8.33% and -7.45% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., $\log\;0.9823{\sim}\log\;1.1042$ and $\log\;1.0132{\sim}\log\;1.1875$ for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Cadilan tablet 12.5 mg was bioequivalent to $Dilatrend^{(R)}$ tablet 12.5 mg.

Bioequivalenee of Samchundang Atenolol Tablet to Tenolmin Tablet (테놀민 정에 대한 삼천당아테놀올 정의 생물학적동등성)

  • Cho, Hea-Young;Kang, Hyun-Ah;Lee, Suk;Baek, Seung-Hee;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.339-344
    • /
    • 2003
  • Atenolol is a water soluble, ${\beta}_1$ selective adrenoceptor antagonist used in the treatment of angina and hypertension. It is primarily eliminated renally with minimal hepatic metabolism. The purpose of the present study was to evaluate the bioequivalence of Samchundang Atenolol (Samchundang Pharmaceutical Co., Korea.) to Tenolmin(Hyundai Pharmaceutical Ind. Co., Korea). The atenolol release from the two atenolol tablets in vitro was tested using KP VII Apparatus II method with various different kinds of dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty four normal male volunteers, 22.83$\pm$1.99 years in age and 65.82$\pm$7.15 kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one tablet containing 50 mg of atenolol was orally administered, blood was taken at predetermined time intervals and the concentrations of atenolol in serum were determined using HPLC method with fluorescence detector. The dissolution profiles of two atenolol tablets were very similar at all dissolution media. Besides, the pharmacokinetic parameters such as $AUC_{t}$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_{t}$ and $C_{max}$ and untransformed $T_{max}$. The results showed that the differences in $AUC_{t}$, $C_{max}$ and $T_{max}$ between two tablets based on the Tenolmin were 3.74%, 4.38% and 17.77%, respectively. There were no sequence effects between two tablets in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log(0.8) to log(1.25) (e.g., log(0.98)∼log(1.l1) and log(0.95)∼log(1.l5) for $AUC_{t}$ and $C_{max}$ respectively), indicating that Samchundang Atenolol tablet is bioequivalent to Tenolmin tablet.

Bioequivalence Test of Gabapentin 400 mg Capsules (가바펜틴 400밀리그람 캡슐의 생물학적동등성시험)

  • Kim, Se-Mi;Kang, Hyun-Ah;Cho, Hea-Young;Shin, Sae-Byeok;Yoo, Hee-Doo;Yoon, Hwa;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.195-200
    • /
    • 2008
  • Gabapentin, [1-(aminomethyl) cyclohexaneacetic acid], a structural analog of $\gamma$-aminobutyric acid (GABA), is being developed for the treatment of epilepsy. Unlike GABA, gabapentin crosses the blood-brain barrier after systemic administration. Gabapentin is an effective antiepileptic drug in patients with partial and secondarily generalized seizures who are uncontrolled with use of existing anticonvulsant drug therapy. The purpose of the present study was to evaluate the bioequivalence of two gabapentin 400 mg capsules, $Neurontin^{(R)}$ capsule 400 mg (Pfizer Inc.) and Gabatin capsule 400 mg (Korean Drug Co. Ltd), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of gabapentin from the two gabapentin formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty six healthy male subjects, 23.58$\pm$1.50 years in age and 66.74$\pm$8.31 kg in body weight, were divided into two groups and a randomized 2$\times$2 cross-over study was employed. After one capsule containing 400 mg as gabapentin were orally administered, blood was taken at predetermined time intervals and the concentrations of gabapentin in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar at all dissolution media. In addition, the pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Neurontin^{(R)}$ capsule 400 mg, were 2.04, -3.68 and 16.79% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log 0.91$\sim$log 1.16 and log 0.87$\sim$log 1.11 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Gabatin capsule 400 mg was bioequivalent to $Neurontin^{(R)}$ capsule 400 mg.

Bioequivalence Test of Fexofenadine Hydrochloride 120 mg Tablets (염산펙소페나딘 120밀리그람 정제의 생물학적동등성시험)

  • Cho, Hea-Young;Kang, Hyun-Ah;Kim, Se-Mi;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.52 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • Fexofenadine, ($\pm$)-4-1-hydroxy-4-{4-(hydroxydiphenylmethyl)-1-piperidinyl}-butyl-a,a-dimethyl benzeneacetic acid, is a selective histamine $H_1$ receptor antagonist, and is clinically effective in the treatment of seasonal allergic rhinitis and chronic idiopathic urticaria as a first-line therapeutic agent. The purpose of the present study was to evaluate the bioequivalence of two fexofenadine hydrochloride tablets, $Allegra^{(R)}$ (Handok Pharmaceuticals Co., Ltd.) and Alecort (Samchundang Pharmaceutical Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of fexofenadine from the two fexofenadine hydrochloride formulations in vitro was tested using KP VIII Apparatus II method with various dissolution media. Twenty six healthy male subjects, 25.62$\pm$3.35 years in age and 70.05$\pm$11.71 kg in body weight, were divided into two groups and a randomized 2$\times$2 cross-over study was employed. After a single tablet containing 120 mg as fexofenadine hydrochloride was orally administered, blood samples were taken at predetermined time intervals and the concentrations of fexofenadine in serum were determined using HPLC with fluorescence detector. The dissolution profiles of two formulations were similar in all tested dissolution media. The harmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated, and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Allegra^{(R)}$, were -1.37, 5.22 and 16.50% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log 0.83$\sim$log 1.08 and log 0.81$\sim$log 1.03 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Alecort tablet was bioequivalent to $Allegra^{(R)}$ tablet.

Effect of target cell nitric oxide synthesis on the sensitivity to lymphokine-activated killer cell cytotoxicity (표적세포의 Nitric oxide 합성이 LAK 세포의 세포독성에 대한 예민도에 미치는 영향)

  • Park, Sung Il;Park, Ju Hyung;Lee, Chi Kug;Kim, Shin Chae;Choi, Bo Geum;Kwak, Jae Yong;Yim, Chang Yeol
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.162-169
    • /
    • 2001
  • Background: Nitric oxide (NO), a cytotoxic molecule is produced in various tissues including tumor cells during interleukin-2 (IL-2) therapy . Lymphokine-activated killer (LAK) cells are induced during IL-2 therapy, and have cytotoxic activity against tumor cells. The current study investigated the effects of NO synthesized in target cells or exposure of target cells to NO on the sensitivity of target cells to LAK cell cytotoxicity. Methods: Cytotoxicity was measured using 4 h chromium release assays. LAK cells which were induced by a 4 day incubation of BALB/c mouse splenocytes with IL-2 (6,000 IU/mL) were employed as effector cells. RD-995 skin tumor cells originated from a C3H/HeN mouse were employed as target cells. NO synthesis in target cells was induced by a 24 h incubation of RD-995 cells with $IFN{\gamma}$ (25 U/mL), TNF (50 U/mL) and IL-1 (20 U/mL). S-nitrosyl acetylpenicillamine (SNAP), an NO donor, was used to expose target cells to NO. $N^G$-monomethyl-L-arginine (MLA) and carboxy-PTIO were added during cytotoxicity assays to inhibit NO synthesis, and to scavenge NO produced by target cells, respectively. Results: Sensitivity of NO-producing RD-995 cells to LAK cell cytotoxicity was decreased by addition of MLA and carboxy-PTIO during cytotoxicity assays. However, the two reagents had no effect on the sensitivity of non-NO-producing RD-995 cells. Pretreatment of RD-995 target cells with SNAP increased the sensitivity in comparison with untreated cells. Conclusions: Sensitivity of target cells to LAK cell cytotoxicity is increased by target cell NO synthesis or exposure to NO. Further studies are needed to evaluate whether these in vitro results have relevance to in vivo phenomena.

  • PDF

Anti-Inflammatory Effect of Licochalcone E, a Constituent of Licorice, on Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophages (Licochalcone E의 항염증 효과와 그 기전에 대한 연구)

  • Park, Geun-Mook;Jun, Jong-Gab;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.656-663
    • /
    • 2011
  • Licochalcone, a major phenolic constituent of the licorice species Glycyrrhiza inflata, a constituent of licorice, exhibits various biological properties, including chemopreventive-, antibacterial-, and anti-spasmodic activities. Recently, Licochalcone E (LicE) was isolated from the roots of Glycyrrhiza inflate, however its biological functions have not been fully examined. In the present study, we investigated the ability of LicE to regulate inflammation reactions in macrophages. Our in vitro experiments using murine macrophages, RAW264.7 cells, showed that LicE suppressed not only nitric oxide (NO) and prostaglandin $E_2$ generation, but also the expression of inducible NO synthase and cyclooxygenase-2 induced by lipopolysaccharide (LPS). Similarly, LicE inhibited the release of proinflammatory cytokines induced by LPS in RAW264.7 cells, including tumor necrosis factor-${\alpha}$ and interleukin-6. The underlying mechanism of LicE on anti-inflammatory action correlated with down-regulation of the nuclear factor-${\kappa}$B. Our data collectively indicate that LicE inhibited the production of several inflammatory mediators and might be used in the treatment of various inflammatory diseases.

Bioequivalence of Tylicol ER Tablet to Tylenol® ER Tablet (Acetaminophen 650 mg) (타이레놀이알서방정(아세트아미노핀 650 mg)에 대한 타이리콜이알정의 생물학적동등성)

  • Kang, Hyun-Ah;Kim, Dong-Ho;Park, Sun-Ae;Yun, Hwa;Kim, Kyung-Ran;Park, Eun-Ja;Cho, Hea-Yeong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.201-207
    • /
    • 2006
  • Acetaminophen (paracetamol), a para-aminophenol derivative, has analgesic and antipyretic properties and weak anti-inflammatory activity. The purpose of the present study was to evaluate the bioequivalence of two acetaminophen tablets, $Tylenol^{\circledR}$ ER (Janssen Korea Ltd.) and Tylicol ER (Hana Pharmaceutical Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The release of acetaminophen from the two acetaminophen formulations in vitro was tested using KP VIll Apparatus II method with pH 1.2 buffer solution. Twenty six healthy male subjects, $22.8{\pm}1.99$ years in age and $65.6{\pm}8.03$ kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After a single tablet containing 650 mg as acetaminophen was orally administered, blood samples were taken at predetermined time intervals and the concentrations of acetaminophen in serum were determined using HPLC with UV detector. The dissolution profiles of two formulations were similar in pH 1.2 buffer solution. The pharmacokinetic parameters such as $AUC_t$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t$, $C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the reference drug, $Tylenol^{\circledR}$ ER, were 2.84, 1.89 and -1.36% for $AUC_t$, $C_{max}$ and $T_{max}$, respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log 0.8 to log 1.25 (e.g., log $0.987{\sim}log$ 1.08 and log $0.944{\sim}log$ 1.17 for $AUC_t$ and $C_{max}$, respectively). Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Tylicol ER tablet was bioequivalent to $Tylenol^{\circledR}$ ER tablet.

Bioequivalence of Kuhnil Propiverine Hydrochloride Tablet to BUP-4 Tablet (Propiverine Hydrochloride 20 mg) (비유피-4 정(염산프로피베린 20 mg)에 대한 건일염산프로피베린 정의 생물학적동등성)

  • Cho, Hea-Young;Park, Eun-Ja;Kang, Hyun-Ah;Baek, Seung-Hee;Kim, Se-Mi;Park, Chan-Ho;Oh, In-Joon;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.419-425
    • /
    • 2004
  • The purpose of the present study was to evaluate the bioequivalence of two propiverine hydrochloride tablets, BUP-4 (Jeil Pharm. Co., Ltd.) and Kuhnil Propiverine Hydrochloride (Kuhnil Pharm. Co., Ltd.), according to the guidelines of the Korea Food and Drug Administration (KFDA). The propiverine release from the two propiverine hydrochloride formulations in vitro was tested using KP VIII Apparatus II method with a variety of dissolution media (pH 1.2, 4.0, 6.8 buffer solutions, water and blend of polysorbate 80 into pH 6.8). Twenty six healthy male subjects, $23.73{\pm}2.79$ years in age and $67.04{\pm}7.93\;kg$ in body weight, were divided into two groups and a randomized $2\;{\times}\;2$ cross-over study was employed. After one tablet containing 20 mg as propiverine hydrochloride was orally administered, blood was taken at predetermined time intervals and the concentrations of propiverine in serum were determined using HPLC method with UV detector. The dissolution profiles of two formulations were similar at all dissolution media. Besides, the pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_t,\;C_{max}$ and untransformed $T_{max}$. The results showed that the differences between two formulations based on the BUP-4 were 0.17%, 7.98% and 4.55% for $AUC_t,\;C_{max}\;and\;T_{max}$. respectively. There were no sequence effects between two formulations in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log(0.8) to log(1.25) $(e.g.,\;log(0.88){\sim}log(1.l2)\;and\;log(0.90){\sim}log(1.l5)\;for\;AUC_t\;and\;C_{max},\;respectively)$. Thus, the criteria of the KFDA bioequivalence guideline were satisfied, indicating Kuhnil Propiverine Hydrochloride tablet was bioequivalent to BUP-4 tablet.