• 제목/요약/키워드: in vitro regeneration

검색결과 533건 처리시간 0.026초

Optimization of Regeneration Condition Under Agrobacterium-mediated Transformation in in vitro Cultured Korean Soybean

  • Kantayos, Vipada;Bae, Chang-Hyu
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.36-36
    • /
    • 2018
  • Soybean is the important crop in Asian countries as protein source, oil production and animal feed. Improving soybean using genetic transformation is the principal tool in nowadays. Developing herbicide resistant transgenic soybean plants through Agrobacterium-mediated transformation has been worked in many previous studied. However, the transformation efficiency is still low. Many attempts try to find the optimum media condition for plant regeneration after infection. After transformation, the plant regeneration is very important condition to promote growth of transgenic plant. In this study, we optimized a regeneration condition for two Korean soybean cultivar, Dawonkong and Pungsannamulkong using cotyledon, cotyledonary nodes and hypocotyl as explant. The results showed that shoot regeneration of cotyledonary nodes on B5 medium containing 2 mg/L 6-benzylaminopurine showed the highest percentage of regeneration in Dawonkong (75.8%) while Pungsannamulkong presented high number of shoots 2.12 shoots per explant. For transformation condition, co-cultivation in 7 days showed a high number of GUS positive expression. Most of explants can survived under media including 5 mg/L of glufocinate which refers phosphinotricin for 2-week selection. Washing with 400 mg/L of cefotaxime in several times and selection in plant regeneration media with 400 mg/L of cefotaxime can prevent bacteria growth, effectively.

  • PDF

MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis

  • Shim, Sangrea;Lee, Hong Gil;Seo, Pil Joon
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.746-757
    • /
    • 2021
  • Plant somatic cells can be reprogrammed into a pluripotent cell mass, called callus, which can be subsequently used for de novo shoot regeneration through a two-step in vitro tissue culture method. MET1-dependent CG methylation has been implicated in plant regeneration in Arabidopsis, because the met1-3 mutant exhibits increased shoot regeneration compared with the wild-type. To understand the role of MET1 in de novo shoot regeneration, we compared the genome-wide DNA methylomes and transcriptomes of wildtype and met1-3 callus and leaf. The CG methylation patterns were largely unchanged during leaf-to-callus transition, suggesting that the altered regeneration phenotype of met1-3 was caused by the constitutively hypomethylated genes, independent of the tissue type. In particular, MET1-dependent CG methylation was observed at the blue light receptor genes, CRYPTOCHROME 1 (CRY1) and CRY2, which reduced their expression. Coexpression network analysis revealed that the CRY1 gene was closely linked to cytokinin signaling genes. Consistently, functional enrichment analysis of differentially expressed genes in met1-3 showed that gene ontology terms related to light and hormone signaling were overrepresented. Overall, our findings indicate that MET1-dependent repression of light and cytokinin signaling influences plant regeneration capacity and shoot identity establishment.

천연추출물 Curcuma xanthorriza oil 함유치약의 치태 및 치은염 억제효과 (Suppressive effect of Curcuma xanthorrhiza oil on plaque and gingivitis)

  • 홍지연;김상년;하원호;장석윤;장인권;박지은;정성원;엄유정;최성호;김종관
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.1053-1071
    • /
    • 2005
  • To find out the suppressive effect of natural extract Curcuma xanthorrhiza on $IL-1{\beta}$ and MMP-2 derived from periodontal ligament cells through in vitro study and to confirm its effect on plaque and gingivitis through clinical study, Curcuma xanthorrhiza containing toothpaste was used and following results were produced. 1. In vitro study, type IV collagenase MMP-2 production was inhibited dose-dependently in the group treated with Curcuma xanthorrhiza compared to the control group. 2. In vitro study, the production of $IL-l{\beta}$ which is one of the inflammatory mediators associated with periodontitis was inhibited dose-dependently in the group treated with Curcuma xanthorrhiza. 3. On the third week, the plaque index of the groups treated with or without Curcuma xanthorrhiza containing toothpastes were both increased significantly compared to the baseline(p<0.05). 4. On the third week, the gingival index of the group treated with Curcuma xanthorrhiza containing toothpaste was not significantly different from baseline. However, the group treated without Curcuma xanthorrhiza containing toothpaste showed a significant increase of gingival index at shielded area(p<0.05). 5. The gingival index of the group without Curcuma xanthorrhiza containing toothpaste showed a significant increase in the sites without tooth brushing when compared to sites with tooth brushing(p<0.05). However. there was no significant difference for the group with Curcuma xanthorrhiza containing toothpaste in sites either with or without tooth brushing. 6. The Bleeding on probing for the group without Curcuma xanthorrhiza containing toothpaste showed no significant difference even when tooth brushing was done. However, for the group with Curcuma xanthorrhiza containing toothpaste, bleeding on probing was significantly reduced compared to baseline when tooth brushing was done(p<0.05).

효모의 ATP 재생산계와 대장균 유래의 재조합 생산효소를 이용한 in vitro 글루타치온 생산 (In-vitro Production of Glutathione Using Yeast ATP Regeneration System and Recombinant Synthetic Enzymes from Escherichia coli.)

  • 고성영;구윤모
    • 한국미생물·생명공학회지
    • /
    • 제26권3호
    • /
    • pp.213-220
    • /
    • 1998
  • 글루타치온 생산에 필요한 ${\gamma}$-glutamylcysteine synthetase와 glutathione synthetase 효소의 활성을 위한 ATP 재생산계에 대하여 연구하였다. 글루타치온 합성용 효소를 생산하는 E. coli TG1/pDR7${\alpha}$의 최적 배양하였으며 이때 글루타치온의 생산농도는31 mg/g wet cell이었다. 빵효모를 이용한 글루타치온의 생산수율은 acetate kinase보다 낮았으나, 경제성의 면에서는 더 우수할 것으로 판단된다. ATP 재생산계로 빵효모가 Saccharomyces cerevrsiae ATCC24858보다 더 우수함을 보였다. ATP농도 5mM에서 cysteine에 대한 글루타치온의 생산 수율은 36%이었다. Cysteine의 소모에 의한 글루타치온 생산 제약을 피하기 위하여 cysteine을 반응 2시간에 추가 공급함으로써 글루타치온 생산수율을 1.91배 증가시켰다. 다양한 기질 추가 실험 결과에 의해 빵효모에 의한 ATP재생산계가 유효하고, 14mM이상의 글루타치온 농도에서는 산물저해 현상이 있는 것으로 나타났다.

  • PDF

Effect of Basal Medium and Plant Growth Regulator on in vitro Plant Regeneration from Axillary Buds of Walnut New Cultiver "Sinlyeong"

  • Kwon, Young Hee;Lee, Joung Kwan;Kim, Hee Kyu;Kim, Kyung Ok;Park, Jae Seong;Huh, Yoon Sun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.15-15
    • /
    • 2019
  • The walnut (Juglans regia L.), a member of the Juglandaceae, is native to the mountain ranges of central Asia. This species of walnut is valued commercially for its nuts and in some areas for its timber. The seeds of walnut are recalcitrant and it has strong integument dormancy and their germination is irregular, making its natural propagation difficult. Low percentage of seed germination and long propagation cycle are the main problems of propagation. This study was conducted medium composition on in vitro plantlet regeneration from axillary buds of walnut. It has proved to be the most generally applicable and reliable method of in vitro propagation. Micropropagation culture that axillary buds are excised aseptically enables faster multiplication of plants. The axillary buds of walnut new cultivar "Sinlyeong" were cultured on two basal media which contained the different plant growth regulators depending on the respective shooting and rooting stage. After 12 weeks, the shoot generation rate was 85.3%, the shoot number and its length were 1.9/explant and 2.7 cm in the most favorable medium composition. The percentage of rooting was 25.4%. From these results, it was found the optimum basal medium and plant growth regulator for in vitro plant regeneration from axillary buds of walnut new cultivar "Sinlyeong". However, we have continued to search the other medium additives to enhance the rate of walnut root.

  • PDF

In vitro regeneration from cotyledon explants in figleaf gourd (Cucurbita ficifolia Bouch$\'{e}$), a rootstock for Cucurbitaceae

  • Kim, Kyung-Min;Kim, Chang-Kil;Han, Jeung-Sul
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.101-107
    • /
    • 2010
  • An efficient plant regeneration system has been developed for figleaf gourd (Cucurbita ficifolia Bouch$\'{e}$), which is exclusively used as a rootstock for cucumber. The protocol is based on results obtained from a series of culture experiments involving different parts of the cotyledons and various media. The culture of cotyledon explants was critical for the enhancement of shoot regeneration frequency. The lower parts of the cotyledon excised at the plumule base were found to display a markedly enhanced production of adventitious shoots compared to other cotyledon regions. Culture in silver nitrate-supplemented Murashige and Skoog (MS) medium was not beneficial for shoot regeneration and suppressed root regeneration. Efficient shoot regeneration was obtained on MS medium containing 1.0 $mg\;l^{-1}$ zeatin and 0.1 $mg\;l^{-1}$ indole-3-acetic acid. Regenerated shoots successfully elongated and rooted in medium containing 0.1 $mg\;l^{-1}$ 1-naphthalene-acetic acid after 10-15 days of subculturing. The plantlets were satisfactorily acclimatized in a greenhouse and grew into normal plants without any morphological alterations.

The Effect of Cyclosporin A on Osteoblast in vitro

  • Choi, Kyung-Hee;Kim, Jae-Woo;Lee, Hyun-Jung;Kang, Jung-Hwa;Kim, Chang-Sung;Yoo, Yun-Jung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • 대한치주과학회:학술대회논문집
    • /
    • 대한치주과학회 2001년도 제41회 종합학술대회 연제초록
    • /
    • pp.107-107
    • /
    • 2001
  • PDF

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

Advances in in vitro culture of the Brassicaceae crop plants

  • Park, Jong-In;Ahmed, Nasar Uddin;Kim, Hye-Ran;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • 제39권1호
    • /
    • pp.13-22
    • /
    • 2012
  • Plant regeneration has been optimized increasingly by organogenesis and somatic embryogenesis using a range of explants with tissue culture improvements focusing on factors, such as the age of the explant, genotype, media supplements and $Agrobacterium$ co-cultivation. The production of haploids and doubled haploids using microspores has accelerated the production of homozygous lines in Brassicaceae crop plants. Somatic cell fusion has facilitated the development of interspecific and intergeneric hybrids in sexually incompatible species of $Brassica$. Crop improvement using somaclonal variation has also been achieved. Transformation technologies are being exploited routinely to elucidate the gene function and contribute to the development of novel enhanced crops. The $Agrobacterium$-mediated transformation is the most widely used approach for the introduction of transgenes into Brassicaceae, and $in$ $vitro$ regeneration is a key factor in developing an efficient transformation method in plants. Although many other Brassicaceae are used as model species for improving plant regeneration and transformation systems, this paper focuses on the recent technologies used to regenerate the most important Brassicaceae crop plants.