• Title/Summary/Keyword: in vitro preservation

Search Result 193, Processing Time 0.026 seconds

Liquid Boar Sperm Quality during Storage and In vitro Fertilization and Culture of Pig Oocytes

  • Park, C.S.;Kim, M.Y.;Yi, Y.J.;Chang, Y.J.;Lee, S.H.;Lee, J.J.;Kim, M.C.;Jin, D.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1369-1373
    • /
    • 2004
  • The percentages of sperm motility and normal acrosome on the liquid boar semen diluted and preserved at $4^{\circ}C$ with lactose hydrate, egg yolk and N-acetyl-D-glucosamine (LEN) diluent were significant differences according to preservation day and incubation time, respectively. The sperm motility steadily declined from 96.9% at 0.5 h incubation to 78.8% at 6 h incubation at 1 day of preservation. However, the sperm motility rapidly declined after 4 day of preservation during incubation. The normal acrosome steadily declined from 93.3% at 0.5 h incubation to 73.8% at 6 h incubation at 1 day of preservation. However, the normal acrosome rapidly declined after 3 day of preservation during incubation. The rates of sperm penetration and polyspermy were higher in 5 and $10{\times}10^6$ sperm/ml than in 0.2 and $1{\times}10^6$ sperm/ml. Mean numbers of sperm in penetrated oocyte were highest in $10{\times}10^6$ sperm/ml compared with other sperm concentrations. The rates of blastocysts from the cleaved oocytes (2-4 cell stage) were highest in $1{\times}10^6$sperm/ml compared with other sperm concentrations. In conclusion, we found out that liquid boar sperm stored at $4^{\circ}C$ could be used for in vitro fertilization of pig oocytes matured in vitro. Also, we recommend $1{\times}10^6$sperm/ml concentration for in vitro fertilization of pig oocytes.

Optimized study of an in vitro 3D culture of preantral follicles in mice

  • Hehe Ren;Yingxin Zhang;Yanping Zhang;Yikai Qiu;Qing Chang;Xiaoli Yu;Xiuying Pei
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.4.1-4.16
    • /
    • 2023
  • Background: In vitro culture of preantral follicles is a promising technology for fertility preservation. Objectives: This study aims to investigate an optimized three-dimensional (3D) fetal bovine serum (FBS)-free preantral follicle culture system having a simple and easy operation. Methods: The isolated follicles from mouse ovaries were randomly divided in an ultra-low attachment 96-well plates supplement with FBS or bovine serum albumin (BSA) culture or encapsulated with an alginate supplement with FBS or BSA culture. Meanwhile, estradiol (E2) concentration was assessed through enzyme-linked immunosorbent assay of culture supernatants. The diameter of follicular growth was measured, and the lumen of the follicle was photographed. Spindle microtubules of oocytes were detected via immunofluorescence. The ability of oocytes to fertilize was assessed using in vitro fertilization. Results: The diameters were larger for the growing secondary follicles cultured in ultra-low attachment 96-well plates than in the alginate gel on days 6, 8, and 10 (p < 0.05). Meanwhile, the E2 concentration in the BSA-supplemented medium was significantly higher in the alginate gel than in the other three groups on days 6 and 8 (p < 0.05), and the oocytes in the FBS-free system could complete meiosis and fertilization in vitro. Conclusions: The present study furnishes insights into the mature oocytes obtained from the 3D culture of the preantral follicle by using ultra-low attachment 96-well plate with an FBS-free system in vitro and supports the clinical practices to achieve competent, mature oocytes for in vitro fertilization.

In Vitro Growth of Preantral Follicle and Maturation of Intrafollicular Oocyte from Aged Mice

  • Yoon, Jung-Ah;Choi, Jung-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • This study aimed to recover the ovarian function through in vitro culture of preantral follicles from aged mice. First, we isolated the preantral follicles from ovaries of sixty-seven-week old B6D2F1 mice with decreased fecundity to know how many follicles were present in them, which was 6 preantral follicles including 2 primary, 2 early secondary and late secondary follicles from 8 aged mice. It was confirmed that a few follicles (~2) were present in aged mice through histological analysis compared to adult mice as control. The 9 days of in vitro culture of preantal follicles showed in vitro growth and induced maturation after treatment with hCG (2.5 IU/mL) and EGF (5 ng/mL). Cumulus cells in the cumulus-oocyte complexes (COCs) were removed using hyaluronidase and oocytes at the germinal vesicle (GV) and GV breakdown (GVBD) were obtained from preantral follicle culture of aged mice in vitro. In conclusion, these observations demonstrated that there still were a few preantral follicles in the ovaries of 67 week-old mice, which we were able to culture in vitro and oocytes were obtained from them. This study proposed an in vitro culture system using preantral follicle as a therapeutic strategy for fertility preservation in humans for assisted reproductive medicine.

Low temperature preservation of bovine ovaries on in vitro development of oocytes (소 난소 저온 보존이 난자의 체외 발달에 미치는 영향)

  • Kim, Sung Woo;Kim, Min Su;Kim, Chan-Lan;Kim, Dongkyo;Kim, Namtae;Seong, Hwan-Hoo
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • During the ovary preservation in low temperature, the cumulus oocyte complexes(COCs) lose their developmental competences after in vitro fertilization. We used phosphate-buffered saline (PBS) as a basic solutions of at various temperatures (25, 15 or $5^{\circ}C$) and supplemented them with 1mM glucose and 0.5mM glutamine as a source of carbohydrate metabolites. After recovery of COCs and in vitro fertilization, a significantly higher number of oocytes developed into blastocysts. The developmental competence of embryos that were originated from ovaries preserved at $15^{\circ}C$ was increased compared to those of 25 or $5^{\circ}C$. The maturation rate of oocytes was not differed between 24 and 36 h at $15^{\circ}C$ but showed lower than control group (71% versus 78%). In vitro-fertilized oocytes from ovaries stored at $25^{\circ}C$ for 24 h or at $5^{\circ}C$ for 24 h had a significantly decreased developmental potentials, but at $15^{\circ}C$ did not (27% versus 29% of blastocysts to develop into day 8). With these results, bovine ovaries can be preserved at $15^{\circ}C$ for 36 h without decreasing developmental capacity of in vitro-fertilized oocyte at least to the blastocyst stage. This information provides valuable information of preserving ovaries for embryo transfer or in vitro embryo production.

In vivo and in vitro sperm production: An overview of the challenges and advances in male fertility restoration

  • Zahra Bashiri;Seyed Jamal Hosseini;Maryam Salem;Morteza Koruji
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.3
    • /
    • pp.171-180
    • /
    • 2024
  • Male infertility can be caused by genetic anomalies, endocrine disorders, inflammation, and exposure to toxic chemicals or gonadotoxic treatments. Therefore, several recent studies have concentrated on the preservation and restoration of fertility to enhance the quality of life for affected individuals. It is currently recommended to biobank the tissue extracted from testicular biopsies to provide a later source of spermatogonial stem cells (SSCs). Another successful approach has been the in vitro production of haploid male germ cells. The capacity of SSCs to transform into sperm, as in testicular tissue transplantation, SSC therapy, and in vitro or ex vivo spermatogenesis, makes them ideal candidates for in vivo fertility restoration. The transplantation of SSCs or testicular tissue to regenerate spermatogenesis and create embryos has been achieved in nonhuman mammal species. Although the outcomes of human trials have yet to be released, this method may soon be approved for clinical use in humans. Furthermore, regenerative medicine techniques that develop tissue or cells on organic or synthetic scaffolds enriched with bioactive molecules have also gained traction. All of these methods are now in different stages of experimentation and clinical trials. However, thanks to rigorous studies on the safety and effectiveness of SSC-based reproductive treatments, some of these techniques may be clinically available in upcoming decades.

In vitro Follicular Growth and Ovulation of Mouse Preantral Follicles Cryopreserved by Vitrification (초자화동결된 생쥐 Preantral Follicle의 체외성장과 배란)

  • Park, Ji-Kwon;Paik, Won Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • Objective: To define an appropriate vitrification condition of preantral follicle that yields high survival and to evaluate growth and ovulation rate of mouse follicles during in vitro culture after vitrification. Methods: Preantral follicles were isolated mechanically from mouse ovaries that were surgically recovered from mice aged 14 days. Retrieved preantral follicles were placed in EG (Ethylene Glycol) for 2, 5, 10 minutes and transferred to EFS-40 (40% EG, 18% Ficoll-70, 0.5 M sucrose) for 0.5, 1, 2 minutes. And then, preantral follicles were placed onto an EM grid and submerged immediately in liquid nitrogen. Thawing was carried out at room temperature. After defining the most appropriate vitrification condition that yields high survival, in vitro growth and ovulation rate of follicles were evaluated. Results: Appropriate vitrification condition that yield high survival rate ($83.2{\pm}2.1%$) of preantral follicle was EG for 5 minutes and EFS-40 for 0.5 minutes. In vitro survival rate of the vitrified preantral follicles were $85.5{\pm}0.5%$, $67.9{\pm}0.8%$ and $40.2{\pm}0.5%$ on day 2, 6 and 10. And in vitro growth of the vitrified preantral follicles were $107.1{\pm}16.1{\mu}m$, $117.1{\pm}18.4{\mu}m$, $178.4{\pm}45.6{\mu}m$ and $325.4{\pm}54.4{\mu}m$ on day 0, 2, 6 and 10. Although in vitro survival rate and growth of vitrified preantral follicles were lower than that of non-vitrified preantral follicles, the patterns of survival and growth were similar in vitrified and non-vitrified preantral follicles. The ovulation rate of antral follicles that was grown from vitrified preantral follicles was $32.6{\pm}1.2%$. Conclusion: Vitrified preantral follicles could be grown to antral sizes, and mature oocytes that can be used for IVF-ET programs were produced successfully. These data suggest that cryopreservation of preantral follicle by vitrification can be used for the preservation of the fertility.

Legal Implications of In Vitro Fertilization and Embryo Transfer (체외수정 및 배이식에 관한 법율고)

  • Bai, Byoung-Choo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.13 no.2
    • /
    • pp.129-136
    • /
    • 1986
  • While the technique of In Vitro Fertilization and Embryo Transfer has been proven undoutedly, it is for from reaching a consensus on the legal implication. Legal authority regarding clinical therapeutic In Vitro Fertilization and Embryo Transfer is, for all practical purpose, nonexistant. In this paper, it is discussed existing regulation dealing with In Vitro Fertilization and Embryo Transfer and related areas i.e. the regulation related medical technologies, the use of donor sperm, donor eggs, surrogate uteri, multiple pregnancy, miscarriages, extra embryos, the technique of cryopreservation. The legality of embryo donation, the responsibility for embryo preservation or destruction and the legal status of the embryos are surveyed. Finally the various legal theories that may give rise to physician liability in connection with clinical In Vitro Fertilization are also reviewed.

  • PDF

Effects of Culture Duration, Follicle Stimulating Hormone (FSH) Type, and Activin A Concentration on In Vitro Growth of Preantral Follicles and Maturation of Intrafollicular Oocytes

  • Choi, Jung Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.117-122
    • /
    • 2019
  • The objective of this study was to establish an in vitro culture system for ovarian preantral follicles of B6D2F1. First, we optimized the in vitro preantral-follicle culture by culture duration, follicle stimulating hormone (FSH) type, and activin A concentration. Duration of in vitro culture for 9, 11, and 13 days was sufficient for the normal development of preantral follicles to antral follicles. Formation of cumulus cell-oocyte complex (COC) was induced by treatment with human chorionic gonadotropin (hCG; 2.5 IU/mL) and epidermal growth factor (EGF; 5 ng/mL). In addition, metaphase II (MII) oocytes formed during this in vitro culture of preantral follicles. In vitro preantralfollicle culture for 9 days showed higher rates of growth and maturation, thus yielding a greater number of antral follicles, and there were significant differences (p < 0.05) in the number of MII oocytes (that formed from these preantral follicles via differentiation) between the 9-day culture and 11-day or 13-day culture. The follicles cultured for 9 days contained a tightly packed well-defined COC, whereas in follicles cultured for 11 days, the COC was not well defined (spreading was observed in the culture dish); the follicles cultured for 13 days disintegrated and released the oocyte. Second, we compared the growth of the preantral follicles in vitro in the presence of various FSH types. There were no significant differences in the growth and maturation rates and in differentiation into MII oocytes during in vitro culture between preantral follicles supplemented with FSH from Merck and those supplemented with FSH from Sigma. To increase the efficiency of MII oocyte formation, the preantral follicles were cultured at different activin A concentrations (0 to 200 ng/mL). The control follicles, which were not treated with activin A, showed the highest rate of differentiation into antral follicles and into MII oocytes among all the groups (0 to 200 ng/mL). Therefore, activin A (50 to 200 ng/mL) had a negative effect on oocyte maturation. Thus, in this study, we propose an in vitro system of preantral-follicle culture that can serve as a therapeutic strategy for fertility preservation of human oocytes for assisted reproductive medicine, for conservation of endangered species, and for creation of superior breeds.