• Title/Summary/Keyword: in vitro metabolism

Search Result 489, Processing Time 0.025 seconds

In vivo and In vitro Metabolism of Recombinant Human Epidermal Growth Factor (DWP401) in Rats (재조합 인간 상피세포성장인자(DWP401)의 흰쥐에서의 in vivo와 in vitro 대사)

  • Koh, Yeo-Wook;Nam, Kouen-Ho;Jung, Ju-Young;Park, Seung-Kook;Yu, Young-Hyo;Kim, Jae-Hwan;Han, Kun;Park, Myung-Hwan;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.381-388
    • /
    • 1997
  • Metabolism of DWP401, recombinant juman epidermal growth factor, was examined in vivo and in vitro in rats. When $^{125}I$-labeled DWP401 was administered at a dose of 50 ${\mu}g$/kg by i.v. injection. $^{125}I$-labeled DWP401 was rapidly degraded within 30 minytes above 93%. Thin layer chromatography analysis of urine collected for 24 hr after i.v. administration of $^{125}I$-labeled DWP401 showed ohly one spot on a X-ray film which was considered as diiodo-tyrosine. This result suggests tha $^{125}I$-labeled DWP401 was completely digested into free amino acids without any specific intermediate polypeptides. About 42.1% of the administered iodine was recovered in 24 hr. For in vitro degradation study, $^{125}I$-labeled DWP401 was added to plama and tissue homogenates of rats and incubated at $37^{\circ}C$. Almost 98% of the added radioactivity recovered from the protein fraction of the liver, kidey, small intestine, stomach and spleen decreased rapidly. For examplem the recovery rates of $^{125}I$-labeled DWP401 were 58.6, 63.2, 39.9, 52.9 and 66.8% after 4hrs of incubation in respective organ homogenates.

  • PDF

Effects of Protein Kinase Inhibitors on In Vitro Protein Phosphorylation and on Secondary Metabolism and Morphogenesis in Streptomyces coelicolor A3(2)

  • Hong, Soon-Kwang;Sueharu, Horinouchi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.325-332
    • /
    • 1998
  • In vitro phosphorylation experiments with a cell extract of Streptomyces coelicolor A3(2) M130 in the presence of ${\gamma}-[^32P]$]ATP revealed the presence of multiple phosphorylated proteins, including the AfsR/AfsK kinases which control the biosynthesis of A-factor, actinorhodin, and undecylprodigiosin. Phosphorylation of AfsR by a cell extract as an AfsK source was significantly inhibited by Ser/Thr protein kinase inhibitors, staurosporine and K-252a, at concentrations giving 50% inhibition ($IC_50$) of $1{\mu}M\;and\;0.1{\mu}M$, respectively. Further in vitro experiments with the cell extracts showed that phosphorylation of multiple proteins was inhibited by various protein kinase inhibitors with different inhibitory profiles. Manganese and calcium ions in the reaction mixture also modulate phosphorylation of multiple proteins. Manganese at 10 mM greatly enhanced the phosphorylation and partially circumvented the inhibition caused by staurosporine and K-252a. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, which are known as tyrosine kinase inhibitors, did not show any significant inhibition of AfsR phosphorylation. Consistent with the in vitro effect of the kinase inhibitors, they inhibited aerial mycelium formation and pigmented antibiotic production on solid media. On the contrary, when assayed in liquid culture, the amount of actinorhodin produced was increased by staurosporine and K-252a and greatly decreased by manganese. All of these data clearly show that the genus Streptomyces possesses several protein kinases of eukaryotic types which are involved in the regulatory network for morphogenesis and secondary metabolism.

  • PDF

Characterization of Preclinical in Vitro and in Vivo Pharmacokinetic Properties of KPLA-012, a Benzopyranyl 1,2,3-Triazole Compound, with Anti-Angiogenetic and Anti-Tumor Progressive Effects

  • Nam, So Jeong;Lee, Taeho;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2018
  • KPLA-012, a benzopyranyl 1,2,3-triazole compound, is considered a potent $HIF-1{\alpha}$ inhibitor based on the chemical library screening, and is known to exhibit anti-angiogenetic and anti-tumor progressive effects. The aim of this study was to investigate the pharmacokinetic properties of KPLA-012 in ICR mice and to investigate in vitro characteristics including the intestinal absorption, distribution, metabolism, and excretion of KPLA-012. The oral bioavailability of KPLA-012 was 33.3% in mice. The pharmacokinetics of KPLA-012 changed in a metabolism-dependent manner, which was evident by the low recovery of parent KPLA-012 from urine and feces and metabolic instability in the liver microsomes. However, KPLA-012 exhibited moderate permeability in Caco-2 cells ($3.1{\times}10^{-6}cm/s$) and the metabolic stability increased in humans compared to that in mice (% remaining after 1 h; 47.4% in humans vs 14.8% in mice). Overall, the results suggest that KPLA-012 might have more effective pharmacokinetic properties in humans than in mice although further studies on its metabolism are necessary.

1,8-cineole protected human lipoproteins from modification by oxidation and glycation and exhibited serum lipid-lowering and anti-inflammatory activity in zebrafish

  • Cho, Kyung-Hyun
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.565-570
    • /
    • 2012
  • We recently reported that a water extract of laurel or turmeric, 1,8-cineole enriched fractions, showed hypolipidemic activity in the zebrafish model. Therefore, the present study investigated the cineole's anti-oxidant and anti-inflammatory activities in lipoprotein metabolism in vitro and in vivo. Cineole had inhibitory effects on cupric ion-mediated oxidation of lipoproteins in general, while simultaneously enhancing ferric ion removal ability in high-density lipoprotein (HDL). Hypercholesterolemia was induced in zebrafish using cholesterol-feeding treatment, 4% cholesterol, for 3 weeks. After feeding with or without the addition of cineole, the results revealed that cineole possessed lipid-lowering and anti-inflammatory activities in hypercholesterolemic zebrafish. In addition, serum amyloid A and interleukin-6 levels were lowered and lipid accumulation was decreased in the liver. Conclusively, 1,8-cineole was found to have anti-oxidant activities in lipoprotein metabolism both in vitro and in vivo with simultaneous reduction of lipid accumulation in the liver of zebrafish.

Evaluation of In-Vitro Dissolution and In-Vivo Absorption for Two Different Film-Coated Pellets of Clarithromycin

  • Zhang Xiang-rong;Chen Xiao-yan;Hu Lian-Dong;Tang Xing;Li San-Ming;Zhong Da-fang
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.977-982
    • /
    • 2005
  • The aim of this study was to compare two formulations of film-coated pellets containing c1arithromycin after single oral dose study in healthy male volunteers. Two formulations with different coating polymers were prepared: formulation-1 (F-1) was prepared by incorporating three kinds of pH-dependent gradient-release coated pellets into capsules and formulation-2 (F-2) was prepared by coated with an insoluble semiosmotic film. Release profiles of filmcoated pellets were evaluated using paddle method under different conditions. Pharmacokinetic profiles of these formulations were obtained in three healthy male volunteers and compared to commercially available immediate release (IR) tablets. The relative bioavailability based on the $AUC_{0-24h}$ was found to be $96.2\%\;and\;58.7\%$ for F-1 and F-2 compared with IR, and the $T_{max}$ was delayed.

In vitro metabolism of a new protective agent, KR-31543 in human liver microsomes

  • Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.286.2-287
    • /
    • 2003
  • The purpose of this paper was to identify the metabolic pathway of a new neuroprotective agent, KR-31543 for ischemia-reperfusion damage in human liver microsomes and characterize cytochrome P450 (CYP) enzymes involved in the in vitro metabolism of KR-31543 generates two metabolites in human liver microsomes : M1, N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine and M2, hydroxy-KR-31543. (omitted)

  • PDF

Identfication of Phase I and Phase II Metabolites of Hesperetin in Rat Liver Microsomes by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry

  • Kim, Un-Yong;Han, Sang-Beom;Kwon, Oh-Seung;Yoo, Hye-Hyun
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.20-23
    • /
    • 2011
  • The purpose of this study is to investigate the in vitro metabolism of hesperetin, a bioflavonoid. Hesperetin was incubated with rat liver microsomes in the presence of NADPH and UDP-glucuronic acid for 30 min. The reaction mixture was analyzed by liquid chromatography-ion trap mass spectrometer and the chemical structures of hesperetin metabolites were characterzed based on their MS/MS spectra. As a result, a total of five metabolites were detected in rat liver microsomes. The metabolites were identified as a de-methylated metabolite (eriodictyol), two hesperetin glucuronides, and two eriodictyol glucuronides.

Comparison of CYP 3A4 metabolism between DA-8159 and Sildenafil in vitro and in vivo

  • Park, Kyung-Jin;Youn, Hae-Sun;Shim, Hyun-Joo;Kim, Soon-Hoe;Yoo, Moo-Hi;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.253.1-253.1
    • /
    • 2002
  • DA-8159 is a new PDEV inhibitor, synthesized by Dong-A Pharm, as an oral agent to treat male erectile dysfunction. DA-8159 and sildenafil are mainly metabolized by cytochrome P450 enzyme CYP 3A4. In this study. we compared the metabolism of DA-8159 with sildenafil in vitro and in vivo. First, we quantified the remaining gatio of original compound, DA-8159 and sidenafil., after we incubated drugs for 30 minutes with human liver microsome cytochrome P 450 3A4. (omitted)

  • PDF

Effects of Citrus Flavonoid, Hesperidin and Naringin on Lipid Metabolism in HepG2 Cells (간배양 HepG2 세포의 지질대사에 미치는 Hesperidin 및 Naringin의 영향)

  • 김범규;차재영;조영수
    • Journal of Life Science
    • /
    • v.9 no.4
    • /
    • pp.382-388
    • /
    • 1999
  • The effects of citrus flavonoids, hesperidin and naringin, on the lipid metabolism were investigated in cultured human hepatocyte HePG2 cells. HepG2 cells were cultured for 6 h and 24 h to the control medium or the media containing hespridin and narigin, which concentrations were 0.5 and 5.0 mg/$m\ell$. There were no significant effects on cell proliferation and cellular protein content, except for increased in these parameters by adding both citrus flavonoids (0.5 mg/$m\ell$). The cellular content of triacylglycerol after 6 h incubation with 0.5 mg/$m\ell$ hesperidin and naringin was markedly increased, and after 24 h incubation that was decreased in both citrus flavonoids supplementation. The supplementation of 5.0 mg/$m\ell$ hesperidin caused a marked decrease in the cellular cholesterol content following 6 h incubation, and that was also reduced markdly, in a dose-dependent manner, during incubation for 24 h. However, there was no significant difference in the cellular cholesterol content in medium supplemented with naringin. The effect of hesperidin and naringin on acyl-CoA: cholesterol acyltransferase (ACAT) activity was studied in vivo and in vitro. The data confirmed that hesperidin inhibit ACAT activity in vivo and in vitro, whereas naringin had no such effect on ACAT activity in vivo but not in vitro. The present study suggests that hesperidin reduces the cellular triacyglycerol and cholesterol contents in human hepatocyte HepG2 cells.

  • PDF

Characterization of in vitro Metabolites of Methylenedioxy Designer Drugs

  • Jun Sang Yu;So Young Jo;Il-Ho Park;Hye Hyun Yoo
    • Mass Spectrometry Letters
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Eutylone, dibutylone, and dimethylone are potential psychotropic designer drugs. The purpose of this study was to investigate the in vitro metabolic pathways of synthetic cathinones with methylenedioxy groups. The three methylenedioxy derivatives were incubated with human liver microsomes. The metabolites were characterized based on liquid chromatography and quadrupole-time-of-flight mass spectrometry. Eutylone, dibutylone, and dimethylone were metabolized to yield three, six, and four metabolites, respectively. Reduction and demethylenation were the major metabolic pathways for all three drugs tested. However, dibutylone and dimethylone showed an additional metabolite generated via N-oxidation. These results provide evidence for the in vivo metabolism of methylenedioxy synthetic cathinones, and could be applied to the analysis of synthetic cathinones and their relevant metabolites in biological samples.