• Title/Summary/Keyword: in vitro metabolism

Search Result 489, Processing Time 0.023 seconds

In vitro Metabolism of Stanozolol to 3'-Hydroxystanozolol in the Liver S-9 Fraction of Polychlorinated Biphenyl-treated Rats (Polychlorinated biphenyl 전처리한 횐쥐 간장의 S-9 분획에서 Stanozolol의 Hydroxylation 대사체의 생성)

  • 권오승;류재천
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.379-383
    • /
    • 2000
  • Stanozolol (STZ, 17$\alpha$-methyl-17$\beta$-hydroxy-5$\alpha$-androstano-(3,2-c) pyrazole), an anabolic steroid, is an abused drug by body-builders or atheletes, as well as medicine for treatment of aplastic anemia and vascular thrombosis. In human volunteers, the major urinary metabolite of STZ was reported to be 3'-hydroxystanozolol that was identified by gas chromatography-mass selective detector (GC/MSD). The objective of this experiment is to investigate the in vitro metabolism of STZ in liver S-9 faction of polychlorinated biphenyl-induced rats. Reaction mixture including STZ as substrate and the S-9 faction was extracted with diethyl ether and quantified by the selected ion monitoring mode of GC/MSD. The selected concentration of substrate STZ is 100 nmole and the selected time for incubation in the reaction mixture was determined to 60 min. The amount of 3'-hydroxystanozolol produced was increased by about 6-fold in the reaction medium including the liver S-9 fraction of polychlorinated biphenyl-induced rats, compared to that of untreated rats. Inhibitors of cytochrome P450, SKF-525A and 7,8-benzoflavone, decreased the production of 3'-hydroxystanozolol by about 89~100% and 65~75%, respectively; In conclusion, hydroxylation of STZ into 3'-hydroxystanozolol is confirmed by GC/MSD and is catalyzed by cytochrome P450.

  • PDF

In vitro Metabolism of Pyribenzoxim

  • Kim, Ki Young;Kim, Jin;Liu, Kwang Hyeon;Lee, Hye-Suk;Kim, Jeong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • The in vitro metabolism of a new herbicide pyribenzoxim, {benzophenone O-[2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime} was studied using rice, barnyardgrass and rat liver microsomes. No metabolism of pyribenzoxim was observed with rice and barnyardgrass microsomes though the cvtochrome P450 was active, which was evidenced by the metabolism of cinnamic acid. With rat liver microsomes, four metabolites (M1, M2, M3, and M4) were produced while parent compound decreased. M1 and M2 were from the hydrolysis reactions and NADPH-dependent metabolites were M3 and M4 (major metabolite) which were hydroxylated by cytochrome P450. They were identified as bispyribac-sodium (M1), benzophenone oxime (M2), {benzophenone O-[2,6-bis[(5-hydroxy-4,6-dimethoxy-2-pyrimidinyl)oxy]-benzoyl]oxime}(M3), and {benzophenone O-[2[(5-hydroxy-4,6-dimethoxy-2l-pyrimidinyl)6-(4,.6dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime} (M4) through LC/MS/MS analyses. Based on the results obtained metabolic map of pyribenzoxim is proposed.

  • PDF

Comparing In Vitro and In Vivo Genomic Profiles Specific to Liver Toxicity Induced by Thioacetamide

  • Kang, Jin-Seok;Jeong, Youn-Kyoung;Shin, Ji-He;Suh, Soo-Kyung;Kim, Joo-Hwan;Lee, Eun-Mi;Kim, Seung-Hee;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.252-260
    • /
    • 2007
  • As it is needed to assay possible feasibility of extrapolation between in vivo and in vitro systems and to develop a new in vitro method for toxicity testing, we investigated global gene expression from both animal and cell line treated with thioacetamide (TAA) and compared between in vivo and in vitro genomic profiles. For in vivo study, mice were orally treated with TAA and sacrificed at 6 and 24 h. For in vitro study, TAA was administered to a mouse hepatic cell line, BNL CL.2 and sampling was carried out at 6 and 24 h. Hepatotoxicity was assessed by analyzing hepatic enzymes and histopathological examination (in vivo) or lactate dehydrogenase (LDH) assay and morphological examination (in vitro). Global gene expression was assessed using microarray. In high dose TAA-treated group, there was centrilobular necrosis (in vivo) and cellular toxicity with an elevation of LDH (in vitro) at 24 h. Statistical analysis of global gene expression identified that there were similar numbers of altered genes found between in vivo and in vitro at each time points. Pathway analysis identified several common pathways existed between in vivo and in vitro system such as glutathione metabolism, bile acid biosynthesis, nitrogen metabolism, butanoate metabolism for hepatotoxicty caused by TAA. Our results suggest it may be feasible to develop toxicogenomics biomarkers by comparing in vivo and in vitro genomic profiles specific to TAA for application to prediction of liver toxicity.

Anticonvulsant Effect of Uncariae Ramulus et Uncus III. - Effects of Ursolic Acid and Hyperin on Neurotransmitters related Components in Brain Tissue In Vitro - (조구등(釣鉤藤) 성분의 항경련효과 III. - Ursolic Acid와 Hyperin이 In Vitro 뇌 신경전달 관련물질에 미치는 효과 -)

  • Kim, Dong-Young;Park, Jong-Cheol;Lee, Chung-Kyu;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.3
    • /
    • pp.187-192
    • /
    • 1998
  • The ethyl acetate fraction of Uncariae Ramulus et Uncus, which showed anticonvulsant effects against pentylenetetrazole (PTZ) treated mice, were subjected to column chromatography to isolate ursolic acid and hyperin from active eluate. Hyperin decreased the elevated activities of GABA-T and xanthine oxidase and lipid peroxide level dose-dependently in PTZ treated mice brain tissue in vitro, but no effect on superoxide dismutase activity. The effects on such enzyme and component seemed to be related with biosynthesis or metabolism of neurotransmitters.

  • PDF

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

Expression and In Vitro Activity of Recombinant Canstatin in Stably Transformed Bombyx mori Cells

  • Lee, Ji-Hye;Lee, Jong-Min;Jeon, Hwang-Bo;Shon, Bong-Hee;Yang, Jai-Myung;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.685-689
    • /
    • 2009
  • We describe the expression of recombinant canstatin from stably transformed Bombyx mori BmS (BmS) cells. Recombinant canstatin was secreted into a culture medium with a molecular mass of approximately 29 kDa. Densitometric scanning showed that the secreted canstatin accounted for approximately 91% of the total canstatin production. Recombinant canstatin was also purified to homogeneity using a simple one-step Ni-NTA affinity fractionation. The identity of the purified protein was confirmed as human canstatin by nano-LC-MS/MS analysis. Purified recombinant canstatin inhibited human endothelial cell proliferation in a dose-dependent manner. The concentration at half-maximum inhibition ($ED_{50}$) for recombinant canstatin expressed in stably transformed BmS cells was approximately 0.64 ${\mu}g/ml$. A maximum production level of 11 mg/l recombinant canstatin was obtained in a T-flask culture of BmS cells after 6 days of incubation.

In vitro Metabolism of Methallylescaline in Human Hepatocytes Using Liquid Chromatography-High Resolution Mass Spectrometry

  • Kim, Sunjoo;Kim, Ju-Hyun;Kim, Dong Kyun;Lee, Jaesin;In, Sangwhan;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.86-90
    • /
    • 2018
  • Methallylescaline, 2-(3,5-dimethoxy-4-[(2-methylprop-2-en-1-yl)oxy]phenyl)ethanamine, is a new psychoactive substance with potent agonist of 5-HT receptor, but there is little information on its pharmacological effect, metabolism, and toxicity. It is necessary to characterize the metabolic profiling of methallylescaline in human hepatocytes using liquid chromatography-high resolution mass spectrometry. Methallylescaline was metabolized to three hydroxy-methallylescaline (M1-M3) and dihydroxy-methallylescaline (M4) via hydroxylation in human hepatocytes. CYP2D6, CYP2J2, CYP1A2, and CYP3A4 enzymes were responsible for the metabolism of methallylescaline. The metabolites as well as methallylescaline would be used for monitoring the abuse of methallylescaline.

Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation

  • Yoon, Miyoung;Clewell, Harvey J. III
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

1, 25(OH)$_2$-23ene-$D_3$ : Effects on Proliferation and Differentiation of U937 Cells in vitro and on Clcium Metabolism of Rat in vivo (1, 25(OH)$_2$-23ene-$D_3$ : in vitro에서 U937 세포의 증식과 분화 및 in vivo에서 쥐의 칼슘대사에 미치는 영향)

  • 정수자;서명자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1995
  • 1, 25(OH)2-23ene-D3 is a novel vitamine D3 analog which has a double bond between C-23 and C-24. We describe the effects of this analog on cell differentiation and cell proliferation in vitro using the human histiocytic lymphoma cell line U937, and on calcium metabolism in rats in vivo. In the present investigation 1, 25(OH)2-23ene-D3 was compared to the natural metabolite of vitamin D3, 1$\alpha$, 25-dihydroxycholecalciferol[1, 25(OH)2-23ene-D3 was more potent than 1, 25(OH)2-23ene-D3 for inhibition of proliferation and induction of differentiation of U937 cells. Especially, its effect on induction of differentiation, as measured by superoxide production and nonspecific esterase(NSE) activity, was about 20-fold more potent that 1, 25(OH)2-23ene-D3. This analog morphologically and functionally differentiated U937 cells to monocyte-macrophage phenotype showing a decrease of N/C ratio in Giemsa staining and the increase of adherence ability to surface. Intraperitoneal administration of 1, 25(OH)2-23ene-D3 to rats showed that the compound had at least 50 times less activity than 1, 25(OH)2-23ene-D3 in causing hypercalcemia and hypercalciuria. The strong direct effects of 1, 25(OH)2-23ene-D3 on cell proliferation and cell differentiation, coupled with its decreased activity of calcium metabolism make this compound an interesting candidate for clinical studies including patients with leukemia, as well as several skin disorders, such as psoriasis.

  • PDF

Evaluation of in vitro ruminal fermentation of ensiled fruit byproducts and their potential for feed use

  • Mousa, Shimaa A;Malik, Pradeep K.;Kolte, Atul P.;Bhatta, Raghavendra;Kasuga, Shigemitsu;Uyeno, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.103-109
    • /
    • 2019
  • Objective: Ensiling of tannin-rich fruit byproducts (FB) involves quantitative and qualitative changes in the tannins, which would consequently change the rumen fermentation characteristics. This study aimed to evaluate whether ensiled FBs are effective in mitigating methane emission from ruminants by conducting in vitro assessments. Methods: Fruit byproducts (grape pomace, wild grape pomace, and persimmon skin) were collected and subjected to four-week ensiling by Lactobacillus buchneri inoculant. A defined feed component with or without FB samples (both fresh and ensiled material) were subjected to in vitro anaerobic culturing using rumen fluid sampled from beef cattle, and the fermentation parameters and microbial populations were monitored. Results: Reduced methane production and a proportional change in total volatile fatty acids (especially enhanced propionate proportion) was noted in bottles containing the FBs compared with that in the control (without FB). In addition, we found lower gene copy number of archaeal 16S rRNA and considerably higher levels of one of the major fibrolytic bacteria (Fibrobacter succinogenes) in the bottles containing FBs than in the control, particularly, when it was included in a forage-based feed. However, in the following cultivation experiment, we observed that FBs failed to exhibit a significant difference in methane production with or without polyethylene glycol, implying that tannins in the FBs may not be responsible for the mitigation of methane generation. Conclusion: The results of the in vitro cultivation experiments indicated that not only the composition but also ensiling of FBs affected rumen fermentation patterns and the degree of methane generation. This is primarily because of the compositional changes in the fibrous fraction during ensiling as well as the presence of readily fermented substrates, whereas tannins in these FBs seemed to have little effect on the ruminal fermentation kinetics.