• Title/Summary/Keyword: in vitro experiments

Search Result 1,064, Processing Time 0.027 seconds

The Inhibition of Oxidative Stress by Chios Gum Mastic is Associated with Autophagy

  • Lee, Bo-Young;Lee, Kee-Hyun;Kim, In-Ryoung;Kim, Yong-Ho;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.65-73
    • /
    • 2014
  • Chios Gum Mastic (CGM) is a natural resin extracted from the leaves of Pistacia lentiscus, a plant endemic to the Greek island of Chios. It has been used by traditional healers, and it has antibacterial, antifungal properties, and therapeutic benefits for the skin. The CGM reduces the formation of dental plaque and bacterial growth in oral saliva, and recent studies have demonstrated the role of antioxidant activity of CGM. Although CGM has been widely investigated, its protective effect against oxidative-damage to keratinocytes, as well as the relationship between CGM and autophagy, has not been investigated. The aim of this study was to assess the protective effect of CGM against $H_2O_2$-induced oxidative stress and to evaluate the autophagic features induced by CGM in human keratinocytes. The pretreatment with CGM significantly reduced apoptosis in $H_2O_2$-exposed HaCaT cells. It promoted the degradation of caspase-3, caspase-8, and caspase-9; and it induced the formation of the processed PARP. The treatment with CGM caused an increase in vesicle formation compared to control group. The level of p62 was reduced and the conversion of LC3-I to LC3-II was increased in CGM treated HaCaT cells. Also, the treatment with CGM increased cleavage of ATG5-ATG12 complex. In summary, CGM helps the cells to survive under stressful conditions by preventing apoptosis and enhancing autophagy. Besides, the present investigation provides evidence to support the antioxidant potential of CGM in vitro and opens up a new horizon for future experiments.

Anti-Apoptotic Effect of Rheum undulatum Water Extract in Pancreatic ${\beta}-cell$ Line, HIT-T15

  • Yoon, Seo-Hyun;Hong, Mee-Sook;Chung, Joo-Ho;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.51-55
    • /
    • 2004
  • Sopungsungi-won has been used as a traditional medicine for diabetes and it has been proved to be a potential remedy for type 2 diabetes mellitus. We previously reported that water extract of Sopungsungi-won exhibits anti-diabetic effects both in vivo and in vitro experiments. In the present study, we have chosen to examined anti-apoptotic effect of Rheum undulatum, which is the main component of Sopungsungi-won, on pancreatic ${\beta}-cells$, HIT-T15, against hydrogen peroxide $(H_2O_2)$. oxidative stress. To investigate the anti-apoptotic effect of Rheum undulatum water extract (RUWE) against $H_2O_2-induced$ apoptosis in pancreatic ${\beta}-cell$ line of hamster, HIT-T15, MTT assay, DAPI staining, TUNEL assay, RT-PCR and caspase-3 enzyme assay were performed. The morphological analysis demonstrated that cells treated with $H_2O_2$ exhibited classical apoptotic features, while such changes was reduced in cells pre-treated with RUWE. In addition, RUWE pre-treated cells prior to $H_2O_2$ treatment induced increase of levels of bcl-2 expression and decrease of caspase-3 enzyme activity compared to cells treated with $H_2O_2$ only. These results provide the possibility of usage of RU in patients with progressively deteriorated diabetes.

Estimation of Ventricular Assist Device Outflow with the Pressures in Air Pressure Line (공압식 박동형 심실보조장치의 공압관 내 압력 측정을 통한 박출량 추정)

  • Kim, Young Il;Her, Keun;Kang, Seong Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.119-124
    • /
    • 2014
  • A Ventricular assist device (VAD) is one of the most efficient treatments to raise the survivability of the end stage heart failure patient. However, some of LVAD patients have died for the failures and improper control of LVAD. To detect critical dangers in LVAD, the monitoring methods of LVAD outflow have been requested, because it can be affected by patient's hemodynamic states and abnormal conditions of LVAD. In the case of an external pulsatile LVAD, the air movement through the air line can be used to estimate LVAD outflow. In this study, the air movement in the air-line of the extracorporeal pulsatile LVAD was measured with a differential pressure sensor between different points. The precise estimation of air movement could be achieved by additional measurement of air pressure. In a series of in-vitro experiments, the LVAD outflow were changed according to the afterload of LVAD and the differential pressure of LVAD didn't have close correlation with the LVAD outflow that were measured with an ultrasonic flowmeter at the same time. However, new precise estimation with the data from differential pressure and one point pressure in the air-line showed higher correlations with LVAD outflow.

Evaluation of the Anti-inflammatory and Immunomodulatory Effects of BSASM Using in vitro Experiments (시험관내에서 천연물제제 BSASM의 항염증 및 면역억제 효능 평가)

  • Lee, Jong-Sung;Park, Yu-Mi;Park, Byung-Hwa;Jung, Kwang-Seon;Kim, Kuk-Hyun;Lee, Won-Hee;Park, Deok-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.228-232
    • /
    • 2003
  • For effective management of atopic dermatitis, it is important to introduce a therapeutic agent although having the fewest side effects, has the greatest anti- inflammatory effect. In the course of screening anti-inflammatory agents, we obtained BSASM composed of several plant extracts. This study was designed to investigate anti-inflammatory and immunomodulatory effects of BSASM. As a first step, $NF-{\kappa}B$ luciferase reporter assay was performed to know the involvement of BSASM in the production of proinflammatory cytokines because $NF-{\kappa}B$ element has been known to play a major role in expression of cytokine genes such as interleukin-8 (IL-8) or tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$. LPS (lipolysaccharide)-induced $NF-{\kappa}B$ activation was inhibited by BSASM. In addition, we found the fact that BSASM inhibits LPS-induced produced production of IL-8 and $TNF-{\alpha}$ proinflammatory cytokines, indicating BSASM has anti-inflammatory effect. In interleukin-2 (IL-2) luciferase reporter assay in Jurkat T cells, BSASM reduced PHA (Phytohemagglutinin)-induced IL-2 luciferase activity, suggesting the possibility that BSASM might also have an immunomodulatory function in T cell-mediated immune response. Based on these results, we suggest the possibility that BSASM can be introduced to improve symptom of immune-related skin diseases, namely, atopic dermatitis.

Hydrogen sulfide ameliorates abdominal aorta coarctation-induced myocardial fibrosis by inhibiting pyroptosis through regulating eukaryotic translation initiation factor 2α phosphorylation and activating PI3K/AKT1 pathway

  • Yaling Li;Zhixiong Wu;Jiangping Hu;Gongli Liu;Hongming Hu;Fan Ouyang;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.345-356
    • /
    • 2023
  • This study aimed to assess the effects of exogenous hydrogen sulfide (H2S) on abdominal aorta coarctation (AAC) induced myocardial fibrosis (MF) and autophagy in rats. Forty-four Sprague-Dawley rats were randomly divided into control group, AAC group, AAC + H2S group, and H2S control group. After a model of rats with AAC was built surgically, AAC + H2S group and H2S group were injected intraperitoneally with H2S (100 µmol/kg) daily. The rats in the control group and the AAC group were injected with the same amount of PBS. We observed that H2S can improve left ventricular function and the deposition of myocardial collagen fibers, inhibit pyroptosis, down-regulate the expression of P-eif2α in myocardial tissue, and inhibit cell autophagy by activating the phosphatidylinositol 3-kinase (PI3K)/AKT1 signaling pathway (p < 0.05). In addition, angiotensin II (1 µM) H9c2 cardiomyocytes were injured in vitro experiments, and it was also observed that pyroptosis was inhibited after H2S (400 µmol/kg) intervention, the expression of P-eif2α in cardiomyocytes was significantly down-regulated, and the PI3K/AKT1 signaling pathway was activated at the same time. Therefore, increasing the expression of P-eif2α reverses the activation of the PI3K/AKT1 signaling pathway by H2S. In conclusion, these findings suggest that exogenous H2S can ameliorate MF in rats with AAC by inhibiting pyroptosis, and the mechanism may be associated with inhibiting the phosphorylation of eif2α and activating the PI3K/AKT1 signaling pathway to inhibit excessive cell autophagy.

Resistance Activity of Kyung-Ok-Ko on Thermal Stress in C. elegans (경옥고(瓊玉膏)의 열 스트레스에 의한 피부노화 억제 활성)

  • Won-Seok Jung;Sung-Young Cho;Hyun-Woo Cho;Hee-Woon Lee;Young‐IL Jeong;Hee-Taek Kim;Young-Bob Yu
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.37 no.1
    • /
    • pp.17-28
    • /
    • 2024
  • Objectives : This study was conducted to reveal the scientific mechanism of the anti-skin aging activity of Kyung-Ok-Ko(KOK), which is highly useful as a Korean traditional medicine and functional food. Methods : The skin wrinkle and aging inhibitory activity of KOK was confirmed through in vitro experiments of human dermal fibroblast neonatal cell(HDFn) and in vivo of C. elegans, and hairless mouse(SKH-1). Results : The amount of the C-terminus of the collagen precursor in the HDFn cell culture medium treated with KOK using an enzymes-linked immunoassay kit. The group treated with KOK 200㎍/㎖ was a 28.3% increase of collagen precursor compared to the control group. KOK showed inhibitory activity of MMP-1 compared to the control group at a concentration of 200㎍/㎖. In addition, KOK 200㎍/㎖ showed significant inhibitory activity of thermal stress and an oxidative stress compared to the control group in C. elegans. Furthermore, KOK showed a concentration-dependent(100mg/kg and 500mg/kg) anti-wrinkle formation effect in UV-irradiated hairless mouse(SKH-1). Additionally, when KOK was administered to UV-irradiated hairless mice, an increase in procollagen -1 and -3 genes expression was observed, and mmp-1 and mmp-9 genes, which increase collagen decomposition, decreased with the administration of KOK. Conclusions : The skin aging inhibition mechanism of Kyung-Ok-Ko(KOK) is presumed to be achieved through suppressing thermal stress and oxidative stress, suppressing mmp-1 and mmp-9 genes, and increasing procollagen-1 and procollagen-3.

Antagonistic Efficacy of Symbiotic Bacterium Xenorhabdus sp. SCG against Meloidogyne spp.

  • Jong-Hoon Kim;Byeong-Min Lee;Hyung Chul Lee;In-Soo Choi;Kyung-Bon Koo;Kwang-Hee Son
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1627-1635
    • /
    • 2024
  • The inhabitation and parasitism of root-knot nematodes (RKNs) can be difficult to control, as its symptoms can be easily confused with other plant diseases; hence, identifying and controlling the occurrence of RKNs in plants remains an ongoing challenge. Moreover, there are only a few biological agents for controlling these harmful nematodes. In this study, Xenorhabdus sp. SCG isolated from entomopathogenic nematodes of genus Steinernema was evaluated for nematicidal effects under in vitro and greenhouse conditions. The cell-free filtrates of strain SCG showed nematicidal activity against Meloidogyne species J2s, with mortalities of > 88% at a final concentration of 10%, as well as significant nematicidal activity against the three other genera of plant-parasitic nematodes in a dose-dependent manner. Thymine was isolated as active compounds by assay-guided fractionation and showed high nematicidal activity against M. incognita. Greenhouse experiments suggested that cell-free filtrates of strain SCG efficiently controlled the nematode population in M. incognita-infested tomatoes (Solanum lycopersicum L., cv. Rutgers). In addition, a significant increase in host plant growth was observed after 45 days of treatment. To our knowledge, this is the first to demonstrate the nematicidal activity spectrum of isolated Xenorhabdus species and their application to S. lycopersicum L., cv. Rutgers under greenhouse conditions. Xenorhabdus sp. SCG could be a promising biological nematicidal agent with plant growth-enhancing properties.

Measurement of Methane Production from Ruminants

  • Bhatta, Raghavendra;Enishi, Osamu;Kurihara, Mitsunori
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1305-1318
    • /
    • 2007
  • On a global scale agriculture and in particular enteric fermentation in ruminants is reported to produce about one fourth (21 to 25%) of the total anthropogenic emissions of methane ($CH_4$). Methane is produced during the anaerobic fermentation of hydrolyzed dietary carbohydrates in the rumen and represents an energy loss to the host besides contributing to emissions of greenhouse gases into the environment. However, there appears to be uncertainty in the $CH_4$ estimation from livestock due to the limited availability of data to document the variability at the farm level and also due to the significant impact of diet on the enteric $CH_4$ production. The methane mitigation strategies require robust prediction of emissions from rumen. There are many methods available which would be suitable for measuring $CH_4$ produced from the various stages of animal production. However, several factors need to be considered in order to select the most appropriate technique like the cost, level of accuracy required and the scale and design of the experiments to be undertaken. Selection of any technique depends on the accuracy as each one has its advantages and disadvantages. Screening of mitigation strategies may be evaluated using individual animal before large-scale trials on groups of animals are carried out. In this review various methods for the estimation of methane production from ruminants as well as for the determination of methane production potential of ruminant feeds are discussed. The advantages and disadvantages of the methods starting from respiration chamber, ventilated hood, facemask, sulphur hexafluoride ($SF_6$) tracer technique, prediction equations and meteorological methods to in vitro methods are detailed.

Anti-oxidative and anti-inflammatory experiments of Talmyung-san in RAW264.7 cells (탈명산(奪命散)의 항산화 및 항염증효과에 관한 연구)

  • Jo, Hyeon-Jin;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.22 no.1
    • /
    • pp.79-92
    • /
    • 2014
  • Objectives : The aim of this study was identification of the anti-oxidative and anti-inflammatory effects of Talmyung-san (TMS) in mouse macrophage, RAW264.7 cells. Methods : To identify the anti-oxidative effect of TMS, scavenging activities of DPPH radical, nitric oxide and peroxynitrite were measured in vitro. In RAW264.7 cells, DCFH-DA assay was conducted to examine the inhibitory effect of TMS on ROS production in response to lipopolysaccharide. And the productions of nitric oxide (NO), $PGE_2$ and pro-inflammatory cytokines were measured. The levels of COX-2, iNOS, nuclear NF-${\kappa}B$ p65 expression and phosphorylation of $I{\kappa}B-{\alpha}$ in cytosol were detected by western blotting analyses. Results : TMS couldn't scavenged DPPH radical, but nitric oxide and peroxynitrite were decreased. TMS decreased intracellular ROS, NO, and IL-$1{\beta}$ production effectively. However, TMS inhibited $PGE_2$ levels only in high concentration ($300{\mu}g/m{\ell}$) and TMS failed to suppress the production of IL-6 and TNF-${\alpha}$. Results from immunoblot analyses revealed that TMS decreased activation of COX-2, iNOS, phosphorylation of $I{\kappa}B-{\alpha}$ and nuclear translocation of p65. Conclusions : TMS has anti-RNS and anti-inflammatory effects via NF-${\kappa}B$ pathway and more intensive studies will be required to evaluate therapeutic potential of TMS.

Tumor Imaging by Monoclonal Antibodies Labeled with Radioactive Metal Ions

  • Endo, K.;Sakahara, H.;Nakashima, T.;Koizumi, M.;Kunimatsu, M.;Ohta, H.;Furukawa, T.;Ohmomo, Y.;Arano, Y.;Yokoyama, A.;Okada, K.;Yoshida, O.;Hosoi, S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.2
    • /
    • pp.77-85
    • /
    • 1984
  • Monoclonal antibodies have become widely investigated in the Nuclear Oncology, especially in the radioimmunosassay of tumor markers and in vivo radioimmunoimaging of cancer. However, there are numerous factors as to whether radioimmunoimaging will ultimately successful. For imaging of tumors, metallic radionuclides such as In-111, Ga-67, Tc-99m have favorable nuclear properties than widely used I-131. These radioistopes have characteristics of the useful radiation for imaging, convenient short half-lives and the simple and rapid radiolabeling of monoclonal antibodies by using bifunctional chelaing agents. The obtained chelate-tagged antibodies are quite stable both in vitro and in vivo, without interfering antibody activities and animal experiments provided a good basis for its clinical applicability for the radioimmunoimaging of cancer. Much attention has also been given to the possibility, only beginning to be exploited, of the specific treatment of malignant neoplasms with these agents. Although specific antibody has not been developed that is uniquely specific for cancer alone and there are still many questions to be answered and problems to be overcome before radioimmunoimaging can be successfully used in ptients with cancer, these methods can be applied to the coupling of monoclonal antibodies with anti-neoplastic drugs or radionuclides suitable for internal radiation therapy of cancer.

  • PDF