• Title/Summary/Keyword: in vitro cancer research

Search Result 689, Processing Time 0.029 seconds

Comparative Reverse Screening Approach to Identify Potential Anti-neoplastic Targets of Saffron Functional Components and Binding Mode

  • Bhattacharjee, Biplab;Vijayasarathy, Sandhya;Karunakar, Prashantha;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5605-5611
    • /
    • 2012
  • Background: In the last two decades, pioneering research on anti-tumour activity of saffron has shed light on the role of crocetin, picrocrocin and safranal, as broad spectrum anti-neoplastic agents. However, the exact mechanisms have yet to be elucidated. Identification and characterization of the targets of bioactive constituents will play an imperative role in demystifying the complex anti-neoplastic machinery. Methods: In the quest of potential target identification, a dual virtual screening approach utilizing two inverse screening systems, one predicated on idTarget and the other on PharmMapper was here employed. A set of target proteins associated with multiple forms of cancer and ranked by Fit Score and Binding energy were obtained from the two independent inverse screening platforms. The validity of the results was checked by meticulously analyzing the post-docking binding pose of the picrocrocin with Hsp90 alpha in AutoDock. Results: The docking pose reveals that electrostatic and hydrogen bonds play the key role in inter-molecular interactions in ligand binding. Picrocrocin binds to the Hsp90 alpha with a definite orientation appropriate for nucleophilic attacks by several electrical residues inside the Hsp90-alpha ATPase catalytic site. Conclusion: This study reveals functional information about the anti-tumor mechanism of saffron bioactive constituents. Also, a tractable set of anti-neoplastic targets for saffron has been generated in this study which can be further authenticated by in vivo and in vitro experiments.

Regulatory Mechanisms of Annexin-Induced Chemotherapy Resistance in Cisplatin Resistant Lung Adenocarcinoma

  • Wang, Chao;Xiao, Qian;Li, Yu-Wen;Zhao, Chao;Jia, Na;Li, Rui-Li;Cao, Shan-Shan;Cui, Jia;Wang, Lu;Wu, Yin;Wen, Ai-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3191-3194
    • /
    • 2014
  • Adenocarcinoma of lung has high incidence and a poor prognosis, woith chemotherapy as the main therapeutic tool, most commonly with cisplatin. However, chemotherapy resistance develops in the majority of patients during clinic treatment. Mechanisms of resistance are complex and still unclear. Although annexin play important roles in various tumor resistance mechanisms, their actions in cisplatin-resistant lung adenocarcinoma remain unclear. Preliminary studies by our group found that in cisplatin-resistant lung cancer A549 cells and lung adenocarcinoma tissues, both mRNA and protein expression of annexins A1, A2 and A3 is increased. Using a library of annexin A1, A2 and A3 targeting combined molecules already established by ourselves we found that specific targeting decreased cisplatin-resistance. Taken together, the underlined effects of annexins A1, A2 and A3 on drug resistance and suggest molecular mechanisms in cisplatin-resistant A549 cells both in vivo and in vitro. Furthermore, the study points to improved research on occurrence and development of lung adenocarcinoma, with provision of effective targets and programmes for lung adenocarcinoma therapy in the clinic.

Intravascular Tumour Targeting of Aclarubicin-loaded Gelatin Microspheres Preparation biocompatibility and biodegradability

  • Lee, Kang-Choon;Koh, Ik-Bae
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.42-49
    • /
    • 1987
  • This study is to evaluate the potential use of aclarubicin-loaded gelatin microspheres as an intravascular biodegradable drug delivery system for the regional cancer therapy. The diameter of the microspheres prepared by water in oil emulsion polymerization could be controlled by adjusting the stirring rate in the range of 10-50 $\mu$m : D(in $\mu$m) = -73.8 log (rpm) + 262.7. The addition of proteolytic enzyme increased the in vitro aclarubicin release but it did not change the amount of the initial burst release which reached about 45%. Microspheres injected intravenously into the mouse tail vein embolized only to the lung when observed by fluorescence microscopy. From histological examination following injection of gelatin microspheres into mouse femoral muscle, mild inflammation was observed from the appearance of neutrophils after 2 days and rapid repair process was confirmed thereafter. Biodegradation process of gelatin microspheres lodged on the pulmonary capillary bed was followed up by microscopic observation; degradation was taking place by about 36 hrs, followed by severe damage on the spheerical shape and microspheres was no longer found 10 days after injection.

  • PDF

Radiosensitization Effects of a Zataria multiflora Extract on Human Glioblastoma Cells

  • Aghamohammadi, Azar;Hosseinimehr, Seyed Jalal;Ghasemi, Arash;Azadbakht, Mohammad;Pourfallah, Tayyeb Allahverdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7285-7290
    • /
    • 2015
  • Background: Although radiotherapy is one of the most effective strategies in the treatment of cancers, it is associated with short and long term side effects on normal tissues. Zataria multiflora Boiss (Laminacea) (ZM) has several biological properties such as antioxidant and anti-inflammation activities.Here we investigated cell killing effects of a hydroalcoholic Zataria multiflora extract on cell death induced by ionizing radiation in a human glioblastoma cell line (A172) and human non-malignant fibroblasts (HFFF2) in vitro. Materials and Methods: A172 and HFFF2 cells were treated with a hydroalcoholic extract of dried aerial parts of Zataria multiflora at different concentrations (25, 50, 100, 150 and $200{\mu}g/ml$) and then exposed to ionizing radiation (IR). Cell proliferation and DNA fragmentation were evaluated. Thymol content in the extract was analyzed and quantified by HPLC methods. Results: A172 cell proliferation was significantly inhibited by ZM. The percentage cell survival was $91.8{\pm}8.57$ for cells treated with $200{\mu}g/ml$ of ZM extract alone while it was $76.0{\pm}4.27$ and $66.2{\pm}8.42$ for cells treated with ZM and exposed to IR at doses of 3Gy and 6Gy, respectively. Radiation-induced apoptosis in A172 cells was significantly increased following treatment with ZM at doses of $200{\mu}g/ml$. ZM extract did not exhibit any enhanced cell killing effects and apoptosis caused by IR on HFFF2 cells. Conclusions: These data show selective radiosensitization effects of ZM in A172 cells apparently due to increased radiation-induced apoptosis.

Development of human tumor necrosis factor-α muteins with improved therapeutic potential

  • Jang, Seung-Hwan;Kim, Hyo-Jin;Cho, Kwang-Hwi;Shin, Hang-Cheol
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.260-264
    • /
    • 2009
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) exhibits cytotoxicity towards various tumor cells in vitro and induces apoptotic necrosis in transplanted tumors in vivo. It also shows severe toxicity when used systemically for the treatment of cancer patients, hampering the development of TNF-$\alpha$ as a potential anticancer drug. In order to understand the structure-function relation of TNF-$\alpha$ with respect to receptor binding, we selected four regions on the bottom of the TNF-$\alpha$ trimer that are in close contact with the receptor and carried out mutagenesis studies and computational modeling. From the study, various TNF-$\alpha$ muteins with a high therapeutic index were identified. These results will provide a structural basis for the design of highly potent TNF-$\alpha$ for therapeutic purposes. By conjugating TNF-$\alpha$ muteins with a high therapeutic index to a fusion partner, which targets a marker of angiogenesis, it could be possible to develop TNF-$\alpha$ based anticancer drugs.

Antioxidant and Aldo-keto Reductase Family 1 B10 Inhibition Activities of Korean Local Plant Extracts (한국 자생식물 추출물의 항산화 및 Aldo-keto Reductase Family 1 B10 효소 억제 효과)

  • Pan, Cheol-Ho;Lee, Joo-Young;Song, Dae-Geun;Kim, Jong-Hwan;Ahn, Soo-Young;Bae, Deok-Sung;Kim, Young-Hoon;Lee, Jae-Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.216-220
    • /
    • 2009
  • Aldo-keto reductase family 1 B10 (AKR1B10) has been considered as a potential cancer therapeutic target. Ethanol extracts prepared from 82 Korean local plants were examined for their antioxidant activity and inhibitory effects on recombinant human AKR1B10 (rhAKR1B10) in vitro. 21 extracts showed more than 80% of ABTS radical scavenging activity at $100\;{\mu}g/mL$ and 11 extracts inhibited more than 50% of rhAKR1B10 activity at $10\;{\mu}g/mL$. Especially, 9 extracts showed potent inhibition on rhAKR1B10 activity compared with positive control tetramethylene glutaric acid.

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.

Effects of Curcuma longa L.on Human Stomach Cancer Cells (울금(鬱金)이 위암세포(胃癌細胞)에 미치는 영향(影響))

  • Cho, Yu-Kyung;Yoon, Song-Ryub;Kim, Beong-Woo;Kim, Jin-Sung;Ryu, Ki-Won;Ryu, Bong-Ha
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.9 no.1
    • /
    • pp.15-37
    • /
    • 2003
  • Objective: We are aimed to identify anti-tumor effects of Curcuma longa L. on the stomach cancer cells through molecular biologic methods. Material & Methods: We used AGS as human stomach cancer cells obtained from American Type Culture Collection. The boiled extract of Curcuma longa L. $5{\mu}l$ (Sample I), $10{\mu}l$ (Sample II) was treated to cultural media(ml) for 0, 6, 12, 24, 48 hours. We measured the killing effect on stomach cancer cells through Trypan blue exclusion test and the suppressive effect on viability of stomach cancer cells via MTT assay. For identification of its anticancer mechanism, the revelation of Bcl-2, Bcl-XL, and Bax which are genes related to apoptosis using the quantitative RT-PCR, change of mitochondria membrane permeability and membrane potential via flow cytometry, the cycle of cell mitosis, caspase cleavage and annexin V staining were examined. Results: 1. showed significant killing effect on stomach cancer cell than the control group with a time(6 hours later) and density dependent manner, which was statistical significance. 2. Extract of Curcuma longa L. showed suppressive effect on viability of stomach cancer cells that each test groups had more suppressive effects on viability of stomach cancer cells than the control group with a time(6 hours later), which was statistical significance.(p<0.05) 3. In the test about the revelation of genes related to apoptosis, the revelation of Bcl-2 and Bcl-XL decreased with a density manner which was statistical significance. but the revelation of Bax was not changed with statistical significance. 4. Extract of Curcuma longa L. caused apoptosis by decreasing the absorbance of mitochondria with statistical significance, and also induced apoptosis by decreasing the membrane potential of mitochondria. 5. Extract of Curcuma longa L. destructed the cell cycle of cell mitosos. 6. Cell apoptosis was induced by extract of Curcuma longa L. certificated by method of caspase cleavage and annexin V staining. Conclusion: This experiment showed that Curcuma longa L. has anti-tumor effect with statistical significance. This is in vitro experiment and basic experiment on Curcuma longa L.. We hope more progressive research on Curcuma longa L. will go on and its anti-tumor effects will be more practically identified.

  • PDF

Genotoxicity Evaluation of the Glycyrrhiza New Variety extract (감초 신품종 추출물의 유전독성 평가)

  • Young-Jae Song;Dong-Gu Kim;Jeonghoon Lee;Wonnam Kim;Hyo-Jin An;Jong-Hyun Lee;Jaeki Chang;Sa-Haeng Kang;Yong-Deok Jeon;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.67-67
    • /
    • 2021
  • The genus Glycyrrhiza (Licorice) has been used as an oriental herbal medicine for a long time in Asian countries. Wongam (WG), which is Glycyrrhiza new variety, have been developed to improve limitation of licorice including low productivity, environmental restriction and insufficient components by Korea Rural Development Administration. To using WG as a herbal medicine, it is important to reveal the adverse effects in health. In this study, we evaluated the genotoxicity test of WG extract through in vitro bacterial reverse mutation (AMES) assay, in vitro chromosomal aberration assay and in vivo mouse bone marrow micronucleus assay. When compared with the control, WG extract with or without the S9 mix showed no genotoxicity in the AMES assay up to 5000 ㎍/plate and in the chromosomal aberration assay up to 1100 ㎍/ml. In micronucleus assay, no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes up to 5000 mg/kg/day for 2 days. The present study demonstrated that WG extract is safe and reliable herbal medicine since no detectable genotoxic effects at least under the conditions of this study.

  • PDF

Intervention Effects of Nedaplatin and Cisplatin on Proliferation and Apoptosis of Human Tumour Cells in Vitro

  • Su, Xiang-Yu;Yin, Hai-Tao;Li, Su-Yi;Huang, Xin-En;Tan, Hua-Yang;Dai, Hong-Yu;Shi, Fang-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4531-4536
    • /
    • 2012
  • Objective: To study synergistic effects of nedaplatin and cisplatin on three human carcinoma cell lines (esophageal carcinoma cell line Eca-109, ovarian carcinoma Skov-3 and cervical carcinoma Hela). Methods: Inhibition effects were evaluated by MTT assay and cell apoptosis was detected by flow cytometry. In addition, changes of Ki-67, Bax and Bcl-2 at mRNA and protein levels were quantified by RT-PCR and Western blotting. Results: Growth inhibition in each cell lines was dose-dependent after exposure to nedaplatin or cisplatin alone. The interaction of the two drugs was synergistic at higher concentrations according to the median-effect principle. The inhibition rates with nedaplatin, cisplatin and combined treatment were $41.9{\pm}4.1%$, $47.4{\pm}2.9%$, $52.5{\pm}0.9%$(Eca-109), $39.0{\pm}1.26%$, $45.0{\pm}1.45%$, $56.2{\pm}1.44%$ (Skov-3) and $44.8{\pm}2.11%$, $46.9{\pm}0.99%$, $56.6{\pm}1.83%$ (Hela) respectively, with increase in apoptosis. Compared with the nedaplatin or cisplatin alone treatment group, the combinative treatment group's Ki-67 and bcl-2 mRNA (protein) expression was decreased while that of Bax mRNA (protein) was increased. Conclusion: Compared to the effects of nedaplatin or cisplatin alone at high concentrations, combination of nedaplatin and cisplatin at low concentrations proved to be much more effective for inhibition of proliferation and the induction of apoptosis in the Eca-109, Skov-3 and Hela cell lines.