• Title/Summary/Keyword: in vitro bud culture

Search Result 108, Processing Time 0.025 seconds

In vitro micropropagation of Philodendron cannifolium (기내배양에 의한 Philodendron cannifolium의 대량번식)

  • Han, Bong-Hee;Park, Byoung-Mo
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.203-208
    • /
    • 2008
  • In order to micropropagate uniform plantlets of Philodendron cannifolium in vitro, the shoot tips were cultured on MS media supplemented with $0.5{\sim}10.0$ mg/L BA or $0.05{\sim}0.1$ mg/L thidiazuron(TDZ). The adventitious multi-bud clusters from basal part of shoots were formed on MS media containing $2.0{\sim}5.0$ mg/L BA or $0.05{\sim}0.1$ mg/L TDZ. But the shoots grown on MS media with TDZ showed necrosis by the lack of chlorophyll. The adventitious multi-bus clusters were cut into $5{\sim}7$ mm sections and cultured on MS media containing BA and TDZ for shoot proliferation. Shoots were proliferated vigorously on MS medium supplemented with $1.0{\sim}3.0$ mg/L BA with up to 30 shoots. But abnormally swollen hard calli were formed from basal parts of shoots on MS media with TDZ and high concentration of BA(10.0 mg/L). The proliferated shoots on same media also showed necrosis by the lack of chlorophyll. The shoot growth and rooting were favorable on MS media containing $0.5{\sim}2.0$ mg/L IBA. The rooted plantlets were acclimatizated effectively in soil mixed with perlite 1:vermiculite 1 or vermiculite alone. Fifteen mL of liquid medium containing 10 g/L activated charcoal and 30 g/L sucrose were added in same vessels after small shoots were proliferated to stimulate shoot growth and rooting. After 8 weeks in culture, the shoots were dipped into high concentration of IBA solution. and planted in soil mexed with perlite 1:vermiculite 1. The shoot growth and rooting were favorable in dipping treatments of $500{\sim}2,000$ ppm IBA solutions for 10 sec.

Plant regeneration and soil acclimatization through photoautotrophic culture from leaf explant of a rare species in Sedum tosaense Makino (희귀수종인 주걱비름(Sedum tosaense Makino)의 잎절편으로부터 기내 식물체 재분화 및 광독립배양을 통한 토양순화)

  • Ko, Myoung-Suk;Bae, Kee Hwa;Song, Gwanpil;So, In Sup
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • The aim of this study was to establish plant regeneration from leaf explants of Sedum tosaense Makino, which is globally rare and endangered species. The leaf explants of S. tosaense were cultured on the MS medium supplemented with different concentration of BA and NAA for callus induction. Callus induction was showed the highest (100%) on MS medium containing $2.0mg{\cdot}L^{-1}$ BA and $1.0mg{\cdot}L^{-1}$ NAA. The highest number of shoots were regenerated when callus were cultured on MS medium containing $2.0mg{\cdot}L^{-1}$ BA and $1.0mg{\cdot}L^{-1}$ NAA for 5 weeks. The axillary bud were cultured on the MS media supplemented with combination of BA and NAA for in vitro propagation. The highest number of adventitious shoot (7.9 per explants) formed at $1.0mg{\cdot}L^{-1}$ NAA and $2.0mg{\cdot}L^{-1}$ BA. For rooting, MS medium supplemented with or without $2.0g{\cdot}L^{-1}$ activated charcoal was tested. The optimal results were observed using MS medium supplemented with $2.0g{\cdot}L^{-1}$ activated charcoal, on which 85.7 (No. of root), 4.6 cm (length of root). 1,200 ppm $CO_2$ and 350 ppm $CO_2$ were supplied for make certain the effects of $CO_2$ on pre-acclimatization by photoautotrophic culture. 1,200 ppm $CO_2$ treatment was established higher than 350 ppm $CO_2$ treatment. Soil acclimatization of in vitro plantlets was the best in mixture soil consisted of peat moss and perlite with 100% survival rate and they showed the maximum growth.

Effect of $CO_2$ Enrichment on the Differentiation of Multi-shoots and Saponin contents in Tissue culture of Korean ginseng (Panax ginseng C. A. Meyer) (인삼(人蔘) 조직배양(組織培養)에서 $CO_2$처리(處理)가 multi-shoot 분화(分化) 및 사포닌 함량(含量)에 미치는 영향(影響))

  • Chung, Chan-Moon;Bae, Kil-Kwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.4
    • /
    • pp.296-302
    • /
    • 1999
  • This experiment was conducted to study the effect of $CO_2$(0, 2, 500, 5, 000, 10, 000ppm) enrichment by enabling ventilation on micropropagation of multi-shoot and on the saponin contents in vitro in Korean ginseng (Panax ginseng C. A. Meyer). Embryo was cultured in Murashige and Skoog medium added 3mg/ l of Indolbutyric acid, Benzyladenin and Gibberellic acid $(GA_3)$, respectively. $CO_2$, enrichment had little effects on the number of adventitious buds and shoots originated from adventitious buds. The ratio of differentiated shoots to adventitious buds were about 50% in $CO_2$, enrichment treatment. The shoots originated from adventitious bud showed more rapid growth and had larger leaf area than the shoots originated from the leaf primordia did. The number of shoot primordia was the highest in 2, 500ppm of $CO_2$ enrichment treatment. On the contrary, 10,000ppm of $CO_2$, enrichment made smaller the number of shoot primordia and ratio of shoots to shoot primordia. The range of shoots differentiated was from shoot primordia were 15. 4 to 23. 9. The rate of dry weight of cultured shoots showed lowest (7. 5%) in control and highest (8. 59%) in 2, 500ppm of $CO_2$, enrichment. Rate of in vitro flower in control was 7.6% and that in 2500ppm of $CO_2$ was about twice (15.7-16.3%) as much as in control. Flower number per a embryo cultured was about 1.2-1.3. In the multi-shoots with callus enriched by 2, 500ppm of $CO_2$, the contents of crude saponin and ginsenosides in multi-shoots alone were higher than in multi-shoots with callus. The characteristics of ginsenosides in multi-shoots were especially the higher content of ginsenoside Rd, Re, and $Rg_1$.

  • PDF

Comparison of Regeneration Conditions in Seven Pepper (Capsicum annuum L.) Varieties (7종의 고추(Capsicum annuum L.) 재분화 조건 비교)

  • Min-Su Kim;Yun-Jeong Han;Sharanya Tripathi;Jinwoo Kwak;Jin-Kyung Kwon;Byoung-Cheorl Kang;Jeong-Il Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.527-539
    • /
    • 2023
  • Pepper (Capsicum annuum L.) is an important vegetable and spice crop that has been cultivated worldwide. Pepper fruits have unique taste and aroma, providing a variety of antioxidants and compounds important for human health, which makes a high economic value. In addition, there is a high demand for new pepper varieties, according to consumer's preference. However, pepper is a recalcitrant plant for in vitro tissue and organ differentiation and plant regeneration, which makes it difficult to develop demanded varieties using newly developed technologies such as genetic engineering and gene editing. In this study, tissue culture and regeneration conditions were investigated using seven pepper varieties that were obtained from the core-collection of Seoul National University. We observed callus and bud induction and shoot formation using several media composition composed of different cytokinins and auxin concentrations. As a result, it was found that there were differences in callus induction and shoot formation of each variety depending on the hormone composition, and the highest regeneration was shown when the medium containing Zeatin Riboside and the petioles of seedlings were used. In particular, out of seven pepper varieties, CMV980 exhibited a higher regeneration efficiency (approximately 48%) than other varieties, followed by Yuwolcho. Therefore, this study provides CMV980 and Yuwolcho as good candidates that can be used for pepper transformation, which might contribute to the development of various varieties through gene editing technology in the future.

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Antigen analysis of Toxoplasma gondii Iysate and excretory-secretory materials by enzyme-linked immunoelectrotransfer blot (EITB) (효소면역 전기영동이적법에 의한 톡소포자충 용해물 및 분비 항원의 분석)

  • 안명희;손혁진
    • Parasites, Hosts and Diseases
    • /
    • v.32 no.4
    • /
    • pp.249-258
    • /
    • 1994
  • Recently, the importance of toxoplasmosis is raised as a complication in immunosuppressed or AIDS patients. Our study focused on the identification of a variety of Toxoplasma antigens by immunoblotting. Rabbits and BALB/c mice were immunized with Toxoplosmo Iysate (RH strain) , frozen tachyzoites (RH strain) or cysts (Beverly and Fukaya strain) . Blood were collected from ear vein, heart or orbital plexus for detecting the serum antibody levels. For excretory-secretory (E.S) antigens, T gondii (RH) tachyzoite were cultured in CHL (Chinese hamster lung) cells with MEM containing of 5% FCS. After 72hrs, culture supernatant was collected. BALB/c mice were inoculated with RH tachyzoite intraperitoneally and peritoneal fluids were extracted three days later. E.S antigens were detected in culture supernatant and infected mouse peritoneal fluid by EITB. Serum IgG levels in rabbit were 1 :512 of 10 days after primary immunization, 1 : 2,048 of 10 days after secondary immunization, 1: 1,024 of 20 days after secondary immunization by IFAT, respectively. Serum IgG levels of immunized mice were 1:128 after 7 weeks. Tachyzoite antigens of the RH strain were detected 25 protein bands ranging 10 kDa-220 kDa of molecular weights with Coomassie blue stain. Toxoplcsma major antigens corresponding to n of 24 kDa, 27 kDa,30 kDa, 35 kDa, 38 kDa were recognized by IgG and IgM antibodies. Excretory-secretory antigens present in culture supernatant with M. W. of 20, 30 kDa and in infected mouse peritoneal fluid with M.W. of 33 (P30), 45 kDa. When RH tachyzoite antigen was probed with different mice sera immunized with 2 strains of T gondii, the IgG antibody bud of Fukaya and Beverly strain (8 week-serum) is identical to those of RH strain. It is considered that the 30 kDa polypeptide detected in excretory- secretory materials and Iysate was important major antigen of T gondii (RH).

  • PDF

Micropropagation of Oak Seedlings from 37 Plus Half-Sib Families (참나무류(類) 수형목(秀型木) 37가계(家系)의 기내증식(器內增殖))

  • Moon, Heung Kyu;Youn, Yang;Son, Sung Ho;Lee, Suk Koo;Yi, Jae Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.1
    • /
    • pp.26-33
    • /
    • 1993
  • In vitro shoot proliferation and rooting were tested for 2-0 seedlings of half-sib families of 4 plus oaks trees. Nodal segments having axillary buds from 37 families(16 of Quercus acutissima, 10 of Q. variabilis, 7 of Q. serrata, and 4 of Q. mongolica) were cultured on WPM(Woody Plant Medium) supplemented with 0.5 mg/l BA (6-benzyladenine) and 0.01 mg/l NAA(${\alpha}$-naphthalene acetic acid) and subcultured at 2-3 weeks of intervals fur 6 months. In vitro rooting was carried out on GD(Gresshoff and Doy) medium supplemented with 0.5mg/l IBA(indole butyric acid). The capacity for shoot proliferation and rooting was highly varied with families. Generally, white oaks(Q. serrata and Q. mongolica) showed poor response than black oaks(Q. acutissima and Q, variabilis) in shoot proliferation and rooting. Among the total of 37 families, 7 of Q. acutissima, each 2 of Q. variabilis, Q. serrata, and Q. mongolica revealed abilities for continuous shoot proliferation, and the others failed to proliferate. Rooting of the selected oak trees also greatly varied among the families. In Q. acutissima, rooting ratio ranged from 10.0%(CB 25. KG 4) to 89.8%(CB 18). Although 26.7% of KG 16 in Q. variabilis, 3.3% of JN 15 in Q. serrata were rooted, Q. mongolica was not rooted at all in this experimental conditions. No relationship between shoot growth and the rooting ability was observed. Present results suggest the possibility of large-scale micropropagation, but further studies on family differences, shoot-tip necrosis, and callusing of rooting junction are still required to develop reliable micropropagation systems.

  • PDF

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF