DOI QR코드

DOI QR Code

Comparison of Regeneration Conditions in Seven Pepper (Capsicum annuum L.) Varieties

7종의 고추(Capsicum annuum L.) 재분화 조건 비교

  • Min-Su Kim (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Yun-Jeong Han (Kumho Life Science Laboratory, Chonnam National University) ;
  • Sharanya Tripathi (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Jinwoo Kwak (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Jin-Kyung Kwon (Department of Agriculture, Forestry and Bioresources & Plant Genomics and Breeding Institute, Seoul National University) ;
  • Byoung-Cheorl Kang (Department of Agriculture, Forestry and Bioresources & Plant Genomics and Breeding Institute, Seoul National University) ;
  • Jeong-Il Kim (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University)
  • 김민수 (전남대학교 융합식품바이오공학과) ;
  • 한윤정 (전남대학교 금호생명과학연구소) ;
  • 트리파티샤란야 (전남대학교 융합식품바이오공학과) ;
  • 곽진우 (전남대학교 융합식품바이오공학과) ;
  • 권진경 (서울대학교 농림생물자원학부 및 식물유전체육종연구소) ;
  • 강병철 (서울대학교 농림생물자원학부 및 식물유전체육종연구소) ;
  • 김정일 (전남대학교 융합식품바이오공학과)
  • Received : 2023.08.18
  • Accepted : 2023.09.04
  • Published : 2023.10.01

Abstract

Pepper (Capsicum annuum L.) is an important vegetable and spice crop that has been cultivated worldwide. Pepper fruits have unique taste and aroma, providing a variety of antioxidants and compounds important for human health, which makes a high economic value. In addition, there is a high demand for new pepper varieties, according to consumer's preference. However, pepper is a recalcitrant plant for in vitro tissue and organ differentiation and plant regeneration, which makes it difficult to develop demanded varieties using newly developed technologies such as genetic engineering and gene editing. In this study, tissue culture and regeneration conditions were investigated using seven pepper varieties that were obtained from the core-collection of Seoul National University. We observed callus and bud induction and shoot formation using several media composition composed of different cytokinins and auxin concentrations. As a result, it was found that there were differences in callus induction and shoot formation of each variety depending on the hormone composition, and the highest regeneration was shown when the medium containing Zeatin Riboside and the petioles of seedlings were used. In particular, out of seven pepper varieties, CMV980 exhibited a higher regeneration efficiency (approximately 48%) than other varieties, followed by Yuwolcho. Therefore, this study provides CMV980 and Yuwolcho as good candidates that can be used for pepper transformation, which might contribute to the development of various varieties through gene editing technology in the future.

고추(Capsicum annuum L.)는 전 세계적으로 재배되고 있는 채소이자 향신료 작물이다. 고추 열매는 독특한 맛과 향을 지니면서 인체 건강에 중요한 항산화제와 다양한 화합물을 제공하기에 경제적 가치가 높다. 또한 소비자의 기호에 따른 새로운 고추 품종에 대한 수요도 높다. 하지만 고추는 조직 및 기관 분화와 식물 재분화가 어려운 식물이기에 유전자재조합 및 유전자 교정과 같은 새로 개발된 기술을 사용하여 요구되는 품종 개발이 어려운 상황이다. 본 연구에서는 서울대학교 Core collection에서 분양 받은 7계통의 고추를 이용하여 조직 배양 및 재분화 조건을 조사하였다. 여기에는 서로 다른 사이토키닌과 옥신 농도로 구성된 여러 가지 배지 조성을 사용하여 캘러스와 부정아 유도, 그리고 신초 형성을 관찰하였다. 그 결과, 호르몬 조성에 따라 캘러스 유도 및 신초 형성에서 품종별 차이가 있는 것으로 확인하였으며, zeatin riboside를 함유한 배지와 유묘의 잎자루 부분을 사용한 경우 재분화율이 가장 높게 나타났다. 특히 사용된 7 계통의 고추 중에서 CMV980 계통이 다른 품종에 비해 월등히 높은 재분화 효율(약48%)을 나타냈고, Yuwolcho 계통이 그 뒤를 이었다. 따라서 본 연구는 CMV980 및 Yuwolcho 계통을 고추 형질전환에 활용될 수 있는 우수한 품종 후보로 제공하며, 이는 향후 유전자교정기술 등을 이용한 다양한 품종 개발에 기여할 수 있을 것이다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 차세대농작물신육종기술개발사업(세부과제번호: PJ01654302)의 지원에 의해 이루어진 것임.

References

  1. Aarrouf, J., P. Castro-Quezada, S. Mallard, B. Caromel, Y. Lizzi and V. Lefebvre. 2012. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes. Plant Cell Rep. 31:391-401.  https://doi.org/10.1007/s00299-011-1174-z
  2. Bagga, S., Y. Lucero, K. Apodaca, W. Rajapakse, P. Lujan, J.L. Ortega and C. Sengupta-Gopalan. 2019. Chile (Capsicum annuum) plants transformed with the RB gene from Solanum bulbocastanum are resistant to Phytophthora capsici. PLoS One 14:e0223213. 
  3. Gammoudi, N., T. San Pedro, A. Ferchichi and C. Gisbert. 2018. Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cell. Dev. Biol.-Plant 54:145-153.  https://doi.org/10.1007/s11627-017-9838-1
  4. Hegde, V., P.S. Partap and R.C. Yadav. 2017. Plant regeneration from hypocotyl explants in Capsicum (Capsicum annuum L.). Int. J. Curr. Microbiol. App. Sci. 6:545-557.  https://doi.org/10.20546/ijcmas.2017.607.066
  5. Heidmann, I., B. de Lange, J. Lambalk, G.C. Angenent and K. Boutilier. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep. 30:1107-1115.  https://doi.org/10.1007/s00299-011-1018-x
  6. Hernandez-Perez, T., M.D. Gomez-Garcia, M.E. Valverde and O. Paredes-Lopez. 2020. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Safe. 19:2972-2993.  https://doi.org/10.1111/1541-4337.12634
  7. Hwang, O.-J., M.-A. Cho, Y.-J. Han, Y.-M. Kim, S.-H. Lim, D.-S. Kim, I. Hwang and J.-I. Kim. 2014. Agrobacterium-mediated genetic transformation of Miscanthus sinensis. Plant Cell Tissue Organ Cult. 117:51-63.  https://doi.org/10.1007/s11240-013-0419-7
  8. Izgu, T., H. Ilbi and Y.Y. Mendi. 2020. Optimization of plant regeneration in different pepper (Capsicum annuum L.) lines. Turk. J. Agric.-Food Sci. Technol. 8:471-477. 
  9. Jung, M., S.H. Shin, J.M. Park, S.N. Lee, M.Y. Lee, K.H. Ryu, K.Y. Paek and C.H. Harn. 2011a. Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper. Plant Biotechnol. Rep. 5:157-167.  https://doi.org/10.1007/s11816-011-0168-1
  10. Jung, M., Y. Hwang, H.Y. Kim, M.C. Cho, I.G. Hwang, S.M. Yoo, H-S. Jeong and J. Lee. 2011b. Evaluation of biological activity in pepper (Capsicum annuum L.) breeding lines. J. Korean Soc. Food Sci. Nutr. 40:642-648 (in Korean).  https://doi.org/10.3746/jkfn.2011.40.5.642
  11. Kim, H. and J. Lim. 2019. Leaf-induced callus formation in two cultivars: hot pepper 'CM334' and bell pepper 'Dempsey'. Plant Signal. Behav. 14:1604016. 
  12. Kim, S.J., J.-Y. Lee, Y.-M. Kim, S.-S. Yang, O.-J. Hwang, N.-J. Hong, K.-M. Kim, H.-Y. Lee, P.-S. Song and J.-I. Kim. 2007. Agrobacterium-mediated high-efficiency transformation of creeping bentgrass with herbicide resistance. J. Plant Biol. 50:577-585.  https://doi.org/10.1007/BF03030712
  13. Ko, M., J.H. Cho, H.-H. Seo, H.-H. Lee, H.-Y. Kang, T.S. Nguyen, H.C. Soh, Y.S. Kim and J-I. Kim. 2016. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. Planta 244:379-392.  https://doi.org/10.1007/s00425-016-2514-6
  14. Ko, M.K., H. Soh, K.M. Kim and Y.S. Kim. 2007. Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. Hortscience 42:1425-1430.  https://doi.org/10.21273/HORTSCI.42.6.1425
  15. Koh, S.C. 2022. Plant regeneration via adventitious shoot formation from hypocotyl explants of groundcherry (Physalis angulata L.). Korean J. Plant Res. 35:502-507. 
  16. Kothari, S.L., A. Joshi, S. Kachhwaha and N. Ochoa-Alejo. 2010. Chilli peppers - A review on tissue culture and transgenesis. Biotechnol. Adv. 28:35-48.  https://doi.org/10.1016/j.biotechadv.2009.08.005
  17. Kumar, R.V., V.K. Sharma, B. Chattopadhyay and S. Chakraborty. 2012. An improved plant regeneration and Agrobacterium-mediated transformation of red pepper (Capsicum annuum L.). Physiol. Mol. Biol. Plants 18:357-364.  https://doi.org/10.1007/s12298-012-0132-8
  18. Lee, Y.H., H.S. Kim, J.Y. Kim, M. Jung, Y.S. Park, J.S. Lee, S.H. Choi, N.H. Her, J.H. Lee, N.I. Hyung, C.H. Lee, S.G. Yang and C.H. Harn. 2004. A new selection method for pepper transformation: callus-mediated shoot formation. Plant Cell Rep. 23:50-58.  https://doi.org/10.1007/s00299-004-0791-1
  19. Li, D., K. Zhao, B. Xie, B. Zhang and K. Luo. 2003. Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Rep. 21:785-788.  https://doi.org/10.1007/s00299-003-0581-1
  20. Luitel, B.P., N.-Y. Ro, H.-C. Ko, J.-S. Sung, J.-H. Rhee and O.-S. Hur. 2018. Phenotypic variation in a germplasm collection of pepper (Capsicum chinense Jacq.) from Korea. J. Crop Sci. Biotechnol. 21:499-506.  https://doi.org/10.1007/s12892-018-0210-0
  21. Martinez-Lopez, M., A. Garcia-Perez, E. Gimeno-Paez, J. Prohens, S. Vilanova and E. Garcia-Fortea. 2021. Screening of suitable plant regeneration protocols for several Capsicum spp. through direct organogenesis. Horticulturae 7:261. 
  22. Park, S.-C., Y.-H. Joung, K.-M. Kim, J.-K. Kim and H.-J. Koh. 2019. Gene-edited crops: Present status and their future. Korean J. Breed. Sci. 51:175-183 (in Korean).  https://doi.org/10.9787/KJBS.2019.51.3.175
  23. Ro, N.-Y., R. Sebastin, O.-S. Hur, G.-T. Cho, B. Geum, Y.-J. Lee and B.-C. Kang 2021. Evaluation of anthracnose resistance in pepper (Capsicum spp.) genetic resources. Horticulturae 7:460. 
  24. Santana-Buzzy, N., A. Canto-Flick, F. Barahona-Perez, M.D. Montalvo-Peniche, P.Y. Zapata-Castillo, A. Solis-Ruiz, A. Zaldivar-Colli, O. Gutierrez-Alonso and M.L. Miranda-Ham. 2005. Regeneration of habanero pepper (Capsicum chinense Jacq.) via organogenesis. HortScience 40:1829-1831.  https://doi.org/10.21273/HORTSCI.40.6.1829
  25. Seo, H.-H., S. Park, S. Park, B.-J. Oh, K. Back, O. Han, J.-I. Kim and Y.S. Kim. 2014. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One 9:e97936. 
  26. Shu, H., Y. Zhang, C. He, M.A. Altaf, Y. Hao, D. Liao, L. Li, C. Li, H. Fu, S. Cheng, G. Zhu and Z. Wang. 2022. Establishment of in vitro regeneration system and molecular analysis of early development of somatic callus in Capsicum chinense and Capsicum baccatum. Front. Plant Sci. 13:1025497. 
  27. Suica-Bunghez, I.R. and R.M. Ion. 2020. Characterization, phytochemical and antioxidant activity of three types of hot pepper (Capsicum Annuum L.). J. Sci. Arts, 51:443-450.
  28. Wang, J.Y. and J.A. Doudna. 2023. CRISPR technology: a decade of genome editing is only the beginning. Science 379:eadd8643. 
  29. Won, K.-H., S.-I. Park, J. Choi, H.H. Kim, B.-C. Kang and H. Kim. 2021. A reliable regeneration method in genome-editable bell pepper 'Dempsey'. Horticulturae 7:317.