• 제목/요약/키워드: in vitro assay system

검색결과 363건 처리시간 0.027초

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVII) -In vitro Mouse Lymphoma Assay and In vitro Supravital Micronucleus Assay with 1, 2-Dichlorobenzene

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권2호
    • /
    • pp.113-118
    • /
    • 2007
  • Chlorobenzenes due to their acute toxicity and the capability of bioaccumulating are of great health and environmental concern. Especially, 1, 2-dichlorobenzene (CAS No. 95-50-1) is used for organic synthesis, dye manufacture, as a solvent and for other applications in chemical industry. Adverse effects of 1, 2-dichlorobenzene includes increases in liver and kidney weights and hepatotoxicity. In this study, we evaluated the genetic toxicity of 1, 2-dichlorobenzene with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vitro mouse supravital micronucleus (MN) assay. 1, 2-Dichlorobenzene appeared the significantly positive results and the induction of large mutant colonies only in the presence of metabolic activation system with MLA. But in vitro testing of 1, 2-dichlorobenzene yielded negative results with supravital MN assay. These results suggest that 1, 2-dichlorobenzene may play a mutagen rather than clastogen in vitro mammalian system.

Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis

  • Lee, Hyunsook;Kang, Kyu-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.705-712
    • /
    • 2018
  • The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). In vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a $2{\times}2$ stitched area from the $4{\times}$ object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, $IC_{50}$ values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVIII)-in vitro Mouse Lymphoma Assay and in vivo Supravital Micronucleus Assay with Butylated Hydroxytoluene (BHT)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.172-176
    • /
    • 2007
  • Butylated hydroxytoluene (BHT) is widely used antioxidant food additives. It has been extensively studied for potential toxicities. BHT appears adverse effects in liver and thyroid. In this study, we evaluated the genetic toxicity of BHT with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vivo mouse supravital micronucleus (MN) assay. BHT did not appear the significantly results in the absence and presence of metabolic activation system with MLA. Also, in vivo testing of BHT yielded negative results with supravital MN assay. These results suggest that BHT itself was not generally considered genotoxic.

소망막내피세포에서 금 나노입자의 최종당화산물에 의한 세포 이동 및 침윤성 억제 효과 (Gold Nanoparticles Inhibit AGEs Induced Migration and Invasion in Bovine Retinal Endothelial Cells)

  • 채수철
    • 환경생물
    • /
    • 제28권1호
    • /
    • pp.8-13
    • /
    • 2010
  • 본 연구는 BRECs에서 AGEs로 유도된 세포의 이동 및 침윤에 있어서 AuNP의 역할에 관한 연구이다. 소 망막으로부터 내피세포를 분리하고, 세포 생존율은 MTT assay로 확인하였다. Wound migration assay는 BRECs의 이동력을 확인하기 위해 수행하였다. Tube formation은 on-gel system을 통해 확인하였다. AuNP의 apoptosis 유도는 caspase-3 assay를 통해 확인하였다. AGE-BSA은 세포증식 및 이동에 있어서 증가함을 보여주었다. 또한 AuNP는 AGE-BSA 존재 유무에 상관없이 세포의 증식, 이동, 신생혈관 형성을 억제하였고, caspase-3을 통해 apoptosis를 유도하였다. 이러한 결과, AuNP는 AGE로 유도된 신생혈관 형성 및 세포의 이동성을 억제하는 약재제로서, 당뇨성 합병증에 있어서 잠재적으로 중요한 분자가 될 것이다.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XVI) - in vitro Mouse Lymphoma Assay with 3 chemicals -

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.244-250
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The genotoxicity of 3 synthetic chemicals was evaluated in L5178Y $tk^{+/-}$ mouse lymphoma cells in vitro. 9H-carbazole (CAS No. 86-74-8) did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 1, 3-Dichloro-2-propanol (CAS No. 96-23-1) revealed a significant increase of mutation frequencies in the range of $625-373\;{\mu}g/mL$ in the absence of metabolic activation system and $157-79\;{\mu}g/mL$ in the presence of metabolic activation system. And also, fenpropathrin (CAS No. 64257-84-7) appeared the positive results only in the absence of metabolic activation system. Through the results of MLA tk assay with 3 synthetic chemicals in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these 3 chemicals.

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.

Comparison of In Vitro Cell Transformation Assay Using Murine Fibroblasts and Human Keratinocytes

  • Ahn, Jun-Ho;Park, Sue-Nie;Yum, Yung-Na;Kim, Ji-Young;Lee, Michael
    • Toxicological Research
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2008
  • The in vitro cell transformation assays (CTA) were performed using BALB/3T3 murine fibroblasts and HaCaT human keratinocytes in order to evaluate concordance between both in vitro CTAs and carcinogenicity with compounds differing in their genotoxic and carcinogenic potential. Six test articles were evaluated, two each from three classes of compounds: genotoxic carcinogens (2-amino-5-nitrophenol and 4-nitroquinoline-N-oxide), genotoxic noncarcinogens (8-hydroxyquinoline and benzyl alcohol), and nongenotoxic carcinogens (methyl carbamate and N-nitrosodiphenylamine). Any foci of size $\geq$2 mm regardless of invasiveness and piling was scored as positive in CTA with BALB/3T3. As expected, four carcinogens regardless of their genotoxicity had positive outcomes in two-stage CTA using BALB/3T3 cells. However, of the two genotoxic noncarcinogens, benzyl alcohol was positive CTA finding. We concluded that, of the 6 chemicals tested, the sensitivity for BALB/3T3 system was reasonably high, being 100%. The respective specificity for BALB/3T3 assay was 50%. We also investigated the correlation between results of BALB/3T3 assay and results from HaCaT assay in order to develop a reliable human cell transformation assay. However, evaluation of staining at later time points beyond the confluency stage did not yield further assessable data because most of HaCaT cells were detached after $2{\sim}3$ days of confluency. Thus, after test article treatment, HaCaT cells were split before massive cell death began. In this modified protocol for this HaCaT system, growing attached colonies were counted instead of transformed foci 3 weeks since last subculture. Compared to BALB/3T3 assay, HaCaT assay showed moderate low sensitivity and high specificity. Despite these differences in specificity and sensitivity, both cell systems did exhibit same good concordance between in vitro CTA and rodent carcinogenicity findings (overall 83% concordant results). At present the major weakness of these in vitro CTA is lack of validation for regulatory acceptance and use. Thus, more controlled studies will be needed in order to be better able to assess and quantitatively estimate in vitro CTA data.

DK1002에 대한 급성독성시험 및 유전독성에 관한 연구 (Acute and Genetic Toxicity Study of DK1002, a Drug Candidate for Analgesics)

  • 류재천;김경란;김현주;정상운;김명국;박희석;김용해
    • Toxicological Research
    • /
    • 제14권3호
    • /
    • pp.427-433
    • /
    • 1998
  • The acute and genetic toxicity of DK1002 was subjected in this study. DK1002 which is a morphine-like new drug candidate synthesized by Dong-Kook Pharmaceutical Co. Ltd. is now under developing as a analgesics that have better drug efficacy and least addictive property. In acute toxicity study, the 50% lethal doses ($LD_{50}$) of DK1002 were determined as>2000mg/kg (p.o.), 237.0mg/kg(i.p.), 57.5mg/kg(i.v.), and 1266.9mg/kg (s.c.). And also, to study the genotoxicity of DK1002, we performed bacterial reversion assay with Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and in vitro chromosomal aberration assay with Chinese hamster lung cells in the presence and absence of S-9 metabolic activation system. In vivo micronucleus assay using mouse bone marrow cells was also performed. From these results, DK1002 was revealed nonmutagenic potential in S. typhimurium TA98, TA100, TA1535, and TA537 both in the absence and presecne of metablic activation system. No clastogenicity of DK1002 was observed in chromosomal aberration assay in vitro as well as in micronucleus assay in vivo.

  • PDF

Genotoxicity Study of AS6, a Triterpenoid Derivatives

  • Kwon, Jung;Lee, Michael;Cha, Kyung-Hoi;Kim, Jong-Choon;Han, Jung-Hee
    • Biomolecules & Therapeutics
    • /
    • 제11권3호
    • /
    • pp.190-195
    • /
    • 2003
  • To assess the genotoxicity of AS6, several classical toxicological tests were performed. In Ames test, AS6 did not show any transformation of revertant with or without S-9 metabolic activating system, indicating the lack of mutagenic effect of the compound. To assess clastogenic effect, in vivo micronucleus and in vitro chromosomal aberration assays were performed using male ICR mice and Chinese hamster lung (CHL) fibroblast cells, respectively. Chromosomal aberration was not induced regardless of the presence of S-9 metabolic activating system. In addition, AS6 did not cause any increase in the incidence of micronucleated polychromatic erythrocytes at any of the dose levels, suggesting little clastogenicity in vitro or in vivo. Taken together, these results demonstrate that AS-6 has no mutagenic effect in our test system.

Genetic Effects of Pesticides in the Mammalian Cells: II. Mutagenesis in L5178Y Cells and DNA Repair Induction

  • Park, sang-Gi;Lee, Se-Yong
    • 한국동물학회지
    • /
    • 제20권4호
    • /
    • pp.159-168
    • /
    • 1977
  • 계대 배양중인 생쥐의 임파종양 L5178Y 세포의 유전자돌연변이 유발성 검출법(Methotrexate-저항성)과 순수분리한 사람의 임파구에서의 DNA 회복복제법을 사용하여 Salmomella/microsome 시스템에서 돌연변이 유발성이 확인된 살충데 DDVP와 trichlorfon, 살균제 TMTD 및 제초제 MO와 NIP등 5종의 농약이 포유동물 세포에 미치는 유전적 영향을 조사했다. 조사한 농약중 TMTD는 상기조사한 시스템 모두에서 양성결과를 보여준 반면에 DDVP와 trichlofon은 L5178Y 세포에서의 돌연변이 유발성은 나타내지 않았으나 DNA회복 복제법에서는 양성결과를 보여주었다. MO와 NIP는 조사한 시스템 모두에서 양성결과를 나타내지않았다.

  • PDF