• Title/Summary/Keyword: in situ process

Search Result 847, Processing Time 0.037 seconds

Characteristics of Bacterial Community for Biological Activated Carbon(BAC) by Culturable and Unculturable Methods. (배양적 및 비배양적 방법에 의한 생물활성탄 부착세균 군집 특성)

  • Park, Hong-Ki;Jung, Eun-Young;Jung, Mi-Eun;Jung, Jong-Moon;Ji, Ki-Won;Yu, Pyung-Jong
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1284-1289
    • /
    • 2007
  • The Biological Activated Carbon (BAC) process in the water treatments represents a kind of biofiltration process which capabilities of bacteria to remove organic matters are maximized. It enables to eliminate organic matters and effectively reduce microbial regrowth potentials. As attached bacteria employ natural organic matter as a substrate, they are significantly dependent on indigenous microorganisms. In this study, characteristics of bacterial community by culturable and unculturable Methods have been conducted in a pilot plant using SAC in water treatment process at the downstream of the Nakdong River. Based on the results, HPC and bacterial- production for coal-based activated carbon material were $1.20{\sim}56.2{\times}l0^7$ cfu/g and $1.2{\sim}3.7\;mgC/m^{3}h$, respectively, in the SAC process. The highest level of attached bacteria biomass and organic carbon removal efficiency was found in the coal-based activated carbon. The genera Pseudomonas, Flavobacterium, Alcaligenes, Acilzetobacter, and Spingomonas were identified for each activated carbon material. Pseudomonas vesicularis was the dominant species in the coconut- and coal-based materials, where as Pseudomonas cepacia was the dominant species in the wood-based material. The Scanning Electron Microscope (SEM) observation of the activated carbon surface also found the widespread distribution of rod form and coccus. The community of attached bacteria was investigated by performing Fluorescent in situ hybridization (FISH) analysis. a group was dominant in coal, wood and coccunt-based materials, ${\alpha},\;{\beta}\;and\;{\gamma}$ group ranged from 27.0 ${\sim}$ 43.0%, 7.1 ${\sim}$ 22.0%, 11.3 ${\sim}$ 28.6%, respectively. These results suggest that a group bacterial community appears to be regulated removal efficiency of organic material in water treatment process.

Improving Soil Washing/flushing Process using a Mixture of Organic/inorganic Extractant for Remediation of Cadmium (Cd) and Copper (Cu) Contaminated Soil (유/무기산 혼합용출제를 이용한 중금속(카드뮴,구리)오염토양 처리공법(soil washing/flushing) 개선에 대한 연구)

  • Lee, Hong-Kyun;Kim, Dong-Hyun;Jo, Young-Hoon;Do, Si-Hyun;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • The applicability of soil washing/flushing to treat a contaminated soil with cadmium (Cd) and copper (Cu) using a mixture of organic/inorganic extractant was evaluated in laboratory-scale batch and column tests. Citric acid was the effective extractant to remove Cd and Cu from the soil among various organic acids except EDTA. Carbonic acid was chosen as inorganic extractant which was not only low toxicity to environment, but also increasing soil permeability. Moreover, the optimum ratio of organic and inorganic extractant to remove Cd and Cu was 10 : 1, and this ratio of organic and inorganic extractant achieved removal efficiencies of Cd (46%) and Cu (39%), respectively. The increasing flow rate of extractant could explain the phenomena of soil packing when carbonic acid was used with organic extractant (i.e. EDTA and citric acid). Therefore, a mixture of organic extractant with inorganic extractant, especially carbonic acid, could resolve a problem of soil packing when this extractant was applied to a field application to remove Cd and Cu using in-situ soil flushing process.

Pervaporation of binary Water/Methanol and Water/Butanol Mixtures through Zeolite 4A Membranes: Experiments and Modeling (제올라이트 4A 분리막을 이용한 물/메탄올, 물/부탄올 혼합물의 투과증발 특성 연구: 실험 및 모형)

  • Oh, Woong-Jin;Jung, Jae-Chil;Yeo, Jeong-gu;Lee, Jung Hyun;Kim, Hyunuk;Park, Young Cheol;Lee, Dong-Ho;Moon, Jong-Ho;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.487-498
    • /
    • 2017
  • In this study, pervaporation performances of water/methanol and water/butanol mixture were evaluated using zeolite 4A membranes manufacutred by FINETECH by experimental works and numerical modeling. Permeation and separation characteristics, such as flux and separation factor, were analyzed by gas chromatography (TCD) and liquid nitrogen traps. Experiments have shown that water is selectively separated from a mixture of water and methanol (separation factor up to approximately 250) and water and butanol (separation factor up to approximately 1,500). Generalized Maxwell Stefan (GMS) theory was implemented to predict pervaporation behaviors of water/alcohol mixtures and diffusional coefficients of zeolite layer were obtained through parameter estimation using $MATLAB^{(R)}$ optimization toolbox. Since the pore size of zeolite 4A are much larger than kinetic diameter of water molecules and smaller than those of methanol and butanol, zeolite 4A membranes can be applied to in situ water removal process such as membrane reactors or hybrid reaction-dehydration process.

Characteristics of Radon Variability in Soils at Busan Area (부산광역시 일대의 토양 내 라돈 농도 변화 특성)

  • Kim, Jin-Seop;Kim, Sun-Woong;Lee, Hyo-Min;Choi, Jeong-Yun;Moon, Ki-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The characteristics of temporal spacial radon variation in soil according to parent rock type and affecting factors were studied in Busan, Korea. The concentration of $^{222}Rn$ in soils and their parent elements ($^{226}Ra$,$^{228}Ra$, U and Th) in rocks and soils were measured at 24 sites in Busan area. The distribution and transportation behavior of these parent elements were analyzed and their correlations to radon concentration in soil were determined. Topographic effects were also evaluated. Two in-situ radon measurement (soil probe and buried tube) methods were applied to measure radon concentration in soil and their accuracies were evaluated. The spatial variation of radon in soil generally reflected U concentration in the parent rock. Average radon concentrations were higher in plutonic rocks than in volcanic rocks and were decreased in the order of felsic>intermediate>mafic rock. However, the radon concentrations were significantly varied in soils developed from same parent rocks due to the disequilibrium of U and $^{226}Ra$ between rock and soil. As results, the correlation of these element concentrations between rocks and soils was very low and radon concentrations in soils had highly co-related to the concentrations of these elements in soils. Th and $^{228}Ra$ show complex enrichment characteristics, differing significantly with U, in soils developed from same parent rock because the geochemical behavior of these elements during weathering and soil developing process was different with U. The radon concentrations in the same depth of soil in slope area were also different according to positions. The radon concentrations in soils developed from same parent rocks (19 sites at Pusan National University) varied 6.8~29.8Bq/L range because of small scale topographic variation. The opposite seasonal variation pattern of radon were observed according to soil properties. It was determined that buried tube method is more accurate method than soil probe method and was very advantageous application for the analysis for the characteristics of temporal spacial radon variation in soil.

THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION (FGF signaling이 연골 형성에 미치는 영향)

  • Park, Choong-Je;Lee, Sang-Won;Nam, Soon-Hyun;Kim, Young-Jin;Ryoo, Hyhn-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.643-653
    • /
    • 2003
  • Fibroblast growth factor (FGF) / FGF receptor (FGFR) mediated signaling is required for skeletogenesis in cluding intramembranous and endochondral ossifications Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) is an essential transcription factor for osteoblast differentiation and bone formation. Murine calvaria and mandible are concurrently undergoing both intramembranous bone and cartilage formations in the early developmental stage. However the mechanism by which these cartilage formations are regulated remains unclear. To elucidate the effect of FGF signaling on development of cranial sutural cartilage and Meckel's cartilage and to understand the role of Runx2 in these process, we have done both in vivo and in vitro experiments. Alcian blue staining showed that cartilage formation in sagittal suture begins from embryonic stage 16 (E16), Meckel's cartilage formation in mandible from E12. We analyzed by in situ hybridization the characteristics of cartilage cells that type II collagen, not type X collagen, was expressed in sagittal sutural cartilage and Meckel's cartilage. In addition, Runx2 was not expressed in Meckel's cartilage as well as sagittal sutural cartilage, except specific expression pattern only surrounding both cartilages. FGF signaling pathway was further examined in vitro. Beads soaked in FGF2 placed on the sagittal suture and mandible inhibited both sutural and Meckel's cartilage formations. We next examined whether Runx2 gene lies in FGF siganling pathway during regulation of cartilage formation. Beads soaked in FGF2 on sagittal suture induced Runx2 gene expression. These results suggest that FGF signaling inhibits formations of sagittal sutural and Meckel's cartilages, also propose that FGF siganling is involved in the proliferation and differentiation of chondroblasts through regulating the transcription factor Runx2.

  • PDF

Expression of Bcl-2 Family in 4-Nitroquinoline 1-Oxide-Induced Tongue Carcinogenesis of the Rat (백서 혀에서의 4-nitroquinoline 1-oxide 유도 발암과정에서 Bcl-2 계 유전자의 발현)

  • Choi, Jae-Wook;Chung, Sung-Su;Lee, Geum-Sug;Kim, Byung-Gook;Kim, Jae-Hyeong;Kook, Eun-Byul;Jang, Mi-Sun;Ko, Mi-Kyeong;Jung, Kwon;Choi, Hong-Ran;Kim, Ok-Joon
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.301-317
    • /
    • 2005
  • The number of patients with tongue carcinoma is increasing rapidly among young individuals in many parts of the world. Oral carcinoma progresses from hyperplastic lesion through dysplasia to invasive carcinoma and the concept of "field cancerization" with molecular alteration has been suggested for oral cavity carcinogenesis. Significant improvement in treatment and prognosis will depend on more detailed understanding of the multi-step process leading to cancer development. To induce tongue carcinoma in rat by 4-NQO, each drinking water was made to 10 ppm, 25 ppm, 50 ppm and control (only D.W. without 4-NQO). Specimens were classified into 4 groups such as control, I (mild & moderate dysplasia), II (severe dysplasia and carcinoma in situ), III (carcinoma). The mRNA expressions of Bcl-2 family were evaluated by RT-PCR technique. For anti-apoptotic Bcl-2 family, mRNA expression of Bcl-w was down-regulated in all stages of tongue carcinogenesis model. However, mRNA expression of Bcl-2 was up-regulated. For pro-apoptotic Bcl-2 family, all members were down-regulated in all stages of tongue carcinogenesis model except for Bad mRNA in group III. In terms of BH3 only protein, mRNA expressions of Bok and Mcl-1 were down regulated in all stages of specimen, but Bmf in group II and BBC3 in group III were up-regulated. Our current findings demonstrated the involvements of mRNA expression of Bcl-2 family in multi-step tongue carcinogensis. This highlights the necessity for continued efforts to discover suitable biomakers (Bcl-2 family) for early diagnosis of the disease, and to understand its pathogenesis as a first step in improving methods of treatment. The discovery of these potential biomarkers and molecular targets for cancer diagnostics and therapeutics has the potential to significantly change the clinical approach and outcome of the disease.

EFFECT OF THE NUCLEAR FACTOR I-C ON THE FORMATION OF HERTWIG'S EPITHELIAL ROOT SHEATH DURING ROOT DEVELOPMENT (Nuclear factor I-C가 치근발생 과정에서 Hertwig's 상피초 형성에 미치는 영향)

  • Shin, In-Cheol;Park, Joo-Cheol;Jeong, Moon-Jin;Oh, Hyun-Ju;Park, Sun-Hwa;Lee, Chang-Seop;Kim, Heung-Joong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.576-583
    • /
    • 2005
  • Tooth formation is a complex developmental process that is mediated through a series of reciprocal epithelial-mesenchymal interactions. Several signal pathways and transcription factors have been implicated in regulating molar crown development, but relatively little is known about the regulation of root development. It was reported that NFI-C knockout mice showed abnormal root formation with normal crown. The aims of this study are to elucidate how the NFI-C regulate the determine of root shape and odontoblasts differentiation. We carried out immunohistochemistry using cytokeratin to investigate the role of Hertwig's epithelial root sheath and DSPP mRNA in-situ hybridization to conform the nature of root dentin during root development in NFI-C knockout mice. Cytokeratin reacted with all the HERS cells and the continuity of cytokeratin positive cells between the HERS cells and enamel epithelium was lost in the cervical region both wild and K/O types. After root dentin deposition cytokeratin positive-HERS cells showed irregularity and loss of polarity in the cervical region in K/O type. DSPP mRNA was strongly expressed in odontoblasts of crown and root dentin in wild type mice, whereas expression of DSPP mRNA was restricted in odontoblast of crown dentin in the K/O type. During root formation in NFI-C knockout mice, HERS normally grow out of the crown but fail to induce odontoblast differentiation in root portion. These results suggest that NFI-C may play important roles in odontoblast differentiation during root dentin formation.

  • PDF

The expression patterns of RANKL and OPG in murine tooth eruption (치아발육시기에서의 RANKL 및 OPG의 발현 양상)

  • Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.290-303
    • /
    • 2006
  • Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Osteoclast precursors must be recruited into the dental follicle prior to the onset of eruption. This function of dental follicle may be regarded as the ability of bone remodeling characterized by the interaction of osteoclasts and osteoblasts. This is because tooth eruption is a localized event in which many of the genes required for eruption are expressed in the dental follicle. RANKL is a membrane-bound protein that is a member of the TNF ligand family. which is present on bone marrow stromal cells and osteoblasts, and induces osteoclast formation and activation from precursor cell. The biologic effect of RANKL is inhibited by OPG and, in bone, the relative ratio of RANKL and OPG modulates osteoclastogenesis. To evaluate the roles of RANKL and OPG in tooth eruption and the relations with the expression pattern of Runx2, in situ hybridization was performed with mandibles of mice at postnatal stage 1, 3, 5, 7, 9 and 11. mRNA of RANKL, OPG, and Runx2 are expressed in dental follicle and surrounding tissue from P1 to 11. To determine the sites of osteoclastic activity during tooth eruption, mandibles were dissected. Peak osteoclastic activity in alveolar bone along the occlusal and basal regions was observed from P5 to 9, with osteoclasts in these regions being large and strongly TRAP-positive The specific spatio-temporal expression patterns of RANKL, OPG, and Runx2 in our study suggest that tooth eruption could be progressed through the interactions of molecular signaling among dental follicle, dental organ and alveolar bone, furthermore it means that dental follicle is quite important in tooth eruption In addition, it indicates that these genes (RANKL, OPG, and Runx2) play critical roles in tooth eruption.

  • PDF

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland (스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구)

  • Lee, Changsoo;Lee, Jaewon;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.359-381
    • /
    • 2020
  • Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.