• Title/Summary/Keyword: in situ process

Search Result 852, Processing Time 0.022 seconds

A Study of the Dependence of Effective Schottky Barrier Height in Ni Silicide/n-Si on the Thickness of the Antimony Interlayer for High Performance n-channel MOSFETs

  • Lee, Horyeong;Li, Meng;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • In this paper, the effective electron Schottky barrier height (${\Phi}_{Bn}$) of the Ni silicide/n-silicon (100) interface was studied in accordance with different thicknesses of the antimony (Sb) interlayer for high performance n-channel MOSFETs. The Sb interlayers, varying its thickness from 2 nm to 10 nm, were deposited by radio frequency (RF) sputtering on lightly doped n-type Si (100), followed by the in situ deposition of Ni/TiN (15/10 nm). It is found that the sample with a thicker Sb interlayer shows stronger ohmic characteristics than the control sample without the Sb interlayer. These results show that the effective ${\Phi}_{Bn}$ is considerably lowered by the influence of the Sb interlayer. However, the current level difference between Schottky diodes fabricated with Sb/Ni/TiN (8/15/10 nm) and Sb/Ni/TiN (10/15/10 nm) structures is almost same. Therefore, considering the process time and cost, it can be said that the optimal thickness of the Sb interlayer is 8 nm. The effective ${\Phi}_{Bn}$ of 0.076 eV was achieved for the Schottky diode with Sb/Ni/TiN (8/15/10 nm) structure. Therefore, this technology is suitable for high performance n-channel MOSFETs.

Remediation of Electroplating Contaminated Soil by a Field Scale Electrokinetic System with Stainless Steel Electrodes

  • Yuan, Ching;Tsai, Chia-Ren;Hung, Chung-Hsuang
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.26-34
    • /
    • 2014
  • A $1.5m(L){\times}1.0m(W){\times}1.1m(H)$ polypropylene (PP) field scale electroniketic system coupled with stainless steel electrodes was designed to examined metal removal performance applied 0.2-0.35 V/cm potential gradient and 0.05-0.5M lactic acid for 20 day. Electroosmosis permeabilities of $2.2{\times}10^{-5}cm^2/V-s$ to $4.8{\times}10^{-5}cm^2/V-s$ were observed and it increased with the potential gradient increased. The reservoir pH controlled at $7.0{\pm}1.0$ has been effectively diminished the clogging of most metal oxides. The best removal efficiency of Zn, Pb, and Ni was 78.4%, 84.3%, and 40.1%, respectively, in the field scale EK system applied 0.35 V/cm and 0.05M lactic acid for 20 days. Increasing potential gradient would more effectively enhance metal removal than increasing concentration of processing fluid. The reservoir and soil temperatures were majorly related to potential gradient and power consumptio. A $4-16^{\circ}C$ above room temperature was observed in the investigated system. It was found that the temperature increase in soil transported the pore water and metals from bottom to the topsoil. This vertical transport phenomenon is critical for the electrokinetic process to remediate in-situ deep pollution.

Formation of Silver Nanoparticles in Polystyrene-b-Poly(oxyethylene methacrylate) Block Copolymer Membranes (Polystyrene-b-Poly(oxyethylene methacrylate) 블록 공중합체 막을 이용한 은 나노입자 생성)

  • Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • A diblock copolymer of polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) was synthesized via atom transfer radical polymerization (ATRP), as revealed by FT-IR spectroscopy. The self-assembled block copolymer membrane was prepared and used to template the growth of silver nanoparticles in the solid state by the introduction of $AgCF_3SO_3$ precursor and UV irradiation process. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed the in situ formation of silver nanoparticles within the block copolymer membranes, and the size of nanoparticles were controlled by adjusting the moiety of hydrophilic POEM domains. PS-b-POEM block copolymer with a lower POEM content was effective in generating smaller size of metal nanoparticles.

Estimation of Slope Behavior by Soil Temperature (지중온도에 의한 사면의 거동 예측)

  • 장기태;한희수;유병선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.407-418
    • /
    • 2003
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure surface resulting from weathering effect and other factors. The FBG(Fiber Bragg Crating) sensor system is used to estimate the correlations between the soil temperature and the slope behavior, and to find a failure surface in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution of the reinforcing materials in an active zone by analyzing the data from the in-situ measurement so that the possible failure surface should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible failure surface due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

Al2TiO5-machinable Ceramics Made by Reactive Sintering of Al2O3 and TiO2 (Al2O3와 TiO2의 반응소결로 제조한 Al2TiO5-기계가공성 세라믹스)

  • Park, Jae-Hyun;Lee, Won-Jae;Kim, Il-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.498-502
    • /
    • 2010
  • Aluminium titanate($Al_2TiO_5$) has extremely anisotropic thermal expansion properties in single crystals, and polycrystalline material spontaneously microcracks in the cooling step after sintering process. These fine intergranular cracks limit the strength of the material, but provide an effective mechanism for absorbing strain energy during thermal shock and preventing catastrophic crack propagation. Furthermore, since machinable BN-ceramics used as an insulating substrate in current micro-electronic industry are very expensive, the development of new low-cost machinable substrate ceramics are consistently required. Therefore, cheap $Al_2TiO_5$-machinable ceramics was studied for the replacement of BN ceramics. $Al_2O_3-Al_2TiO_5$ ceramic composite was fabricated via in-situ reaction sintering. $Al_2O_3$ and $TiO_2$ powders were mixed with various mol-ratio and sintered at 1400 to $1600^{\circ}C$ for 1 h. Density, hardness and strength of sintered ceramics were systematically measured. Phase analysis and microstructures were observed by XRD and SEM, respectively. Machinability of each specimens was tested by micro-hole machining. The results of research showed that the $Al_2TiO_5$-composites could be used for low-cost machinable ceramics.

Eco-friendly Fabrication Process of Al-Ti-C Grain Refiner

  • Cho, Hoon;Kim, Bong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.147-150
    • /
    • 2010
  • An eco-friendly production technique of Al-8.6Ti-0.025C refiner was developed by melting a Al-Ti master alloy in a graphite crucible, in which the potential nucleation site, TiC effectively formed by the spontaneous in-situ reaction between excessive Ti and carbon from graphite crucible. The A3003 alloy refined by the Al-8.6Ti-0.025C showed effectively refined macrostructure and enhanced mechanical properties comparable to the commercial Al-Ti-B refiner. The effective refinement was achieved in a shorter compare to the melt-treating time commercial Al-Ti-B refiner.

Modeling and Characteristics of Ethanol Fermentation Process Combined with Pervaporation (투과증발과 결합된 에탄올 발효 공정의 모델링 및 특성)

  • 최은수;김진현;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 1992
  • Pervaporation which is capable of removing ethanol selectively was adopted to reduce the ethanol inhibition and in situ recovery of ethanol in ethanol fermentation, The composite membrane made of silicone and polysulfone was used to separate the ethanol selectively. The ethanol selectivity of the membrane was about 4 and the total flux was 300 g/m2 h at 301:: and 10 mmHg for 25 g/l of feed concentration. Saccharomyces cerevisiae entrapped within Ca-alginate gels was employed for ethanol fermentations in a fluidized-bed bioreactor. The pervaporation membrane unit and fluidized-bed bioreactor were combined into one system. The proposed model equations for the combined system showed good accordances with the experimental results. It was found from the simulation results that the ethanol concentration in the broth for the combined system was lower than that for the continuous fermentation system without a membrane unit. Ethanol productivity can be thus increased by employing the combined system.

  • PDF

Biological Evaluation for Characteristics of Leachate Toxicity from Municipal Solid Waste Landfill (생물학적 방법에 의한 도시생활폐기물 매립지의 침출수 독성특성 평가)

  • 황인영;류경무
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.31-39
    • /
    • 1996
  • Leachate from municipal solid waste (MSW) landfill, effluent from leachate treatment plant, and ground water sample from a monitoring well near landfill site were tested for an acute toxicity. Microtox toxicity test was used for testing the acute toxicity of leachate and other samples. EC$_{50}$ values which a concentration of pollutant for reducing 50% light output from luminescent bacteria, Photobacterium phosphoreum were determined to assess the toxicity of pollutants as well as the relative toxicity. In addition, characteristics of leachate were studied and compared to those of phenol and pentachlorophenol (PCP) which are typical aquatic toxic pollutants. For leachate, EC$_{50}$ for 30 min incubation was 10.8%, while for phenol and PCP, 46 ppm and 1.2 ppm, respectively. the relative toxicity of treated leachate by in situ aeration with activated sludge was reduced to more than 75% of toxicity of the untreated leachate. Microtox toxicity test was failed to figure out EC$_{50}$ values for groundwater from a monitoring well since the relative toxicity of the unconcentrated sample was too low to estimate EC$_{50}$. Addition of activated carbon to leachate was reduced the relative toxicity. The reduction Pattern of the relative toxicity of leachate by mechanical aeration was similar to that of PCP, but different from that of phenol. These findings suggest that the toxicity of leachate may come from PCP-like toxic compounds rather than phenol-like one. In conclusion, the process of aeration with activated sludge might be very important to reduce the environmental toxicity of leachate. And Microtox test could be a reasonable bioassay for screening and monitoring the environmental toxicity of leachate from municipal solid waste landfill as well as for determining the reduction efficiency of the leachate toxicity by various treatment processes in leachate treatment plant.

  • PDF

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

Template Synthesis and Characterization of Host (Nanocavity of Zeolite Y)-Guest ([Cu([18]aneN4S2)]2+, [Cu([20]aneN4S2)]2+, [Cu(Bzo2[18]aneN4S2)]2+, [Cu(Bzo2[20]aneN4S2)]2+) Nanocomposite Materials

  • Salavati-Niasari, Masoud;Mirsattari, Seyed Nezamodin;Saberyan, Kamal
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.348-354
    • /
    • 2009
  • Copper(II) complexes with tetraoxo dithia tetraaza macrocyclic ligands; [18]ane$N_4S_2$: 1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, [20]ane$N_4S_2$: 1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane,Bzo2[18]ane$N_4S_2$: dibenzo-1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, Bzo2[20]ane$N_4S_2$: dibenzo-1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane; were entrapped in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); $[Cu(N-N)_2]^{2+}$-NaY; in the nanopores of the zeolite, and (ii) in situ template condensation of the copper(II) precursor complex with thiodiglycolic acid. The obtained complexes and new host-guest nanocomposite materials; $[Cu([18]aneN_4S_2)]^{2+}-NaY,\;[Cu([20]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[18]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[20]aneN_4S_2)]^{2+}$-NaY; have been characterized by elemental analysis FT-IR, DRS and UV-Vis spectroscopic techniques, molar conductance and magnetic moment data, XRD and, as well as nitrogen adsorption. Analysis of data indicates all of the complexes have been encapsulated within nanopore of zeolite Y without affecting the zeolite framework structure.