• 제목/요약/키워드: in situ chamber

검색결과 136건 처리시간 0.024초

Technical Investigation into the In-situ Electron Backscatter Diffraction Analysis for the Recrystallization Study on Extra Low Carbon Steels

  • Kim, Ju-Heon;Kim, Dong-Ik;Kim, Jong Seok;Choi, Shi-Hoon;Yi, Kyung-Woo;Oh, Kyu Hwan
    • Applied Microscopy
    • /
    • 제43권2호
    • /
    • pp.88-97
    • /
    • 2013
  • Technical investigation to figure out the problems arising during in-situ heating electron backscatter diffraction (EBSD) analysis inside scanning electron microscopy (SEM) was carried out. EBSD patterns were successfully acquired up to $830^{\circ}C$ without degradation of EBSD pattern quality in steels. Several technical problems such as image drift and surface microstructure pinning were taking place during in-situ experiments. Image drift problem was successfully prevented in constant current supplying mode. It was revealed that the surface pinning problem was resulted from the $TiO_2$ oxide particle formation during heating inside SEM chamber. Surface pinning phenomenon was fairly reduced by additional platinum and carbon multi-layer coating before in-situ heating experiment, furthermore was perfectly prevented by improvement of vacuum level of SEM chamber via leakage control. Plane view in-situ observation provides better understanding on the overall feature of recrystallization phenomena and cross sectional in-situ observation provides clearer understanding on the recrystallization mechanism.

인시투 가스 측정이 가능한 경제적 가스 챔버 구현 및 센서 전압에 따른 가스 응답 특성 분석 (Economical Gas Chamber for In-situ Gas Measurement and Analysis of Gas Response Characteristics according to Sensor Voltage)

  • 최연석;이인환
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.1-8
    • /
    • 2019
  • Breath analysis using a portable device is better than the classical breath analysis system in terms of installation and operation. There is an increasing need to develop cost-effective equipment for testing gas sensors from the viewpoint of functionalities that can be applied applicable to portable devices. In the present study, an economical gas chamber for in-situ gas measurement is implemented with a single gas chamber without using expensive gas storage and control equipment; the gas response characteristics are analyzed using the above-described chamber. The main features of the implemented gas chamber are simple injection procedure, improved gas diffusion, easy measurement and cleaning, support for low-power mode measurement function for portable devices, and open source platform. Moreover, an analysis of gas response characteristics based on changes in sensor voltage show that the sensitivity and 90% response time are affected by the sensor voltage. Furthermore, the sensitivity graph has an inflection point in a specific range. The gas sensor applied in this study showed fast response speed and high sensitivity for sensor voltages of 3.0-3.5 V, regardless of the concentration of acetone gas, the target gas used in this study.

베나제프릴의 장관막 투과도와 흡수 클리어런스에 미치는 아목시실린의 영향 (Effect of Amoxicillin on the Intestinal Membrane Permeability and Absorption Clearance of Benazepril)

  • 주은희;김영만;고형석;이용복;나한광
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 1998
  • Intestinal absorption of ${\beta}-lactam$ antibiotics and angiotensin converting enzyme(ACE) inhibitors has been shown to use the carrier-mediated transport system. In vitro experiments have established that the efficacy of uptake by enterocytes depends on an inwardly directed proton gradient. It was suggested that benazepril was mediated by tripeptide transport system and that amoxicillin was transported by dipeptide transport carrier. The aim of this study is to assess the influence of amoxicillin on the intestinal absorption of benazepril using in vitro diffusion chamber and in situ single pass perfusion technique in the rat in order to elucidate whether the above transport systems are competitive or not. We obtained the gastrointestinal pemeability coefficient of amoxicillin, benazepril and both of them using in vitro diffusion chamber. And also the gastrointestinal absorption clearance of amoxicillin, benazepril and both of them using in situ single-pass perfusion method at steady state were calculated. Amoxicillin and benazepril were analyzed by HPLC. The results by the use of diffusion chamber in vitro indicated that the apparent intestinal permeability coefficient of benazepril was significantly(p<0.01) decreased by amoxicillin(45.2%) and vice versa significantly(p<0.01) decreased(89.1%). The results by the in situ gastrointestinal single-pass perfusion method indicated that the intestinal absorption clearance of benazepril was significantly(p<0.05) decreased by amoxicillin (40.2%) and vice versa significantly(p<0.05) decreased(54.8%). These results might suggest that they share the same peptide carrier pathway for oral absorption.

  • PDF

Use of In-Situ Optical Emission Spectroscopy for Leak Fault Detection and Classification in Plasma Etching

  • Lee, Ho Jae;Seo, Dong-Sun;May, Gary S.;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.395-401
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for leak detection in plasma etching system. A misprocessing is reported for significantly reduced silicon etch rate with chlorine gas, and OES is used as a supplementary sensor to analyze the gas phase species that reside in the process chamber. Potential cause of misprocessing reaches to chamber O-ring wear out, MFC leaks, and/or leak at gas delivery line, and experiments are performed to funnel down the potential of the cause. While monitoring the plasma chemistry of the process chamber using OES, the emission trace for nitrogen species is observed at the chlorine gas supply. No trace of nitrogen species is found in other than chlorine gas supply, and we found that the amount of chlorine gas is slightly fluctuating. We successfully found the root cause of the reported misprocessing which may jeopardize the quality of thin film processing. Based on a quantitative analysis of the amount of nitrogen observed in the chamber, we conclude that the source of the leak is the fitting of the chlorine mass flow controller with the amount of around 2-5 sccm.

In-Situ Dry-cleaning (ISD) Monitoring of Amorphous Carbon Layer (ACL) Coated Chamber

  • Lee, Ho-Jae;Park, George O.;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.183-183
    • /
    • 2012
  • In the era of 45 nm or beyond technology, conventional etch mask using photoresist showed its limitation of etch mask pattern collapse as well as pattern erosion, thus hard mask in etching became necessary for precise control of etch pattern geometry. Currently available hard mask materials are amorphous carbon and polymetric materials spin-on containing carbon or silicon. Amorphous carbon layer (ACL) deposited by PECVD for etch hard mask has appeared in manufacturing, but spin-on carbon (SOC) was also suggested to alleviate concerns of particle, throughput, and cost of ownership (COO) [1]. SOC provides some benefits of reduced process steps, but it also faced with wiggling on a sidewall profile. Diamond like carbon (DLC) was also evaluated for substituting ACL, but etching selectivity of ACL was better than DLC although DLC has superior optical property [2]. Developing a novel material for pattern hard mask is very important in material research, but it is also worthwhile eliminating a potential issue to continuously develop currently existing technology. In this paper, we investigated in-situ dry-cleaning (ISD) monitoring of ACL coated process chamber. End time detection of chamber cleaning not only provides a confidence that the process chamber is being cleaned, but also contributes to minimize wait time waste (WOW). Employing Challenger 300ST, a 300mm ACL PECVD manufactured by TES, a series of experimental chamber cleaning runs was performed after several deposition processes in the deposited film thickness of $2000{\AA}$ and $5000{\AA}$. Ar Actinometry and principle component analysis (PCA) were applied to derive integrated and intuitive trace signal, and the result showed that previously operated cleaning run time can be reduced by more than 20% by employing real-time monitoring in ISD process.

  • PDF

In Situ Heat Treatment of ZnO:Al Thin Films Fabricated by RF Magnetron Sputtering

  • Kim, Deok Kyu
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.307-311
    • /
    • 2017
  • ZnO:Al thin films were deposited on glass substrate by RF magnetron sputtering followed by in situ heat treatment in the same chamber. Effects of in situ heat treatment on properties of ZnO:Al thin films were investigated in this study. As heat treatment temperature was increased, crystal quality was improved first and then it was deteriorated, surface roughness was decreased, and sheet resistance was also decreased. The decrease in sheet resistance was caused by increasing carrier concentration due to decreased surface roughness. The decrease in surface roughness resulted in increase of transmittance. Therefore, in situ heat treatment is an effective method for obtaining films with better electrical characteristics.

보급형 He-Ne 타원해석기의 제작과 $TiO_2$ 박막 유효밀도 변화의 in-situ 측정 (Fabrication of He-Ne ellipsometer and in-situ measurement of effective density variation of $TiO_2$thin films)

  • 김상준;방현용;김상열
    • 한국진공학회지
    • /
    • 제8권4A호
    • /
    • pp.432-437
    • /
    • 1999
  • We have fabricated an in situ ellipsometer operating at He-Ne wavelength. It can be applied to the real-time, in-situ tracking of the ellisometric change which occurs during various sample treatments. As a rotating analyzer type, all optical elements and related parts are designed to share a common hollow-axis configuration, and hence the ellipsometer is compact in shape and simple in design. It is mountable on the spare ports of vacuum chamber with ease. Using this ellipsometer, we observed the effective density variation of previously grown $TiO_2$ thin films by using electron beam evaporation. The packing density of the as-grown film was 82%. When exposed to atomsphere, the micro-void of the film was filled with water vapor. This water-filled $TiO_2$ thin film was subject to heating/cooling cycles in vacuum and the ellipsometric variation versus temperature and cycling number was measured in real time using this in situ He-Ne ellipsometer.

  • PDF

저층 경계면 연구용 Benthic chamber(BelcI) 개발 (The Development of a Benthic Chamber (BelcI) for Benthic Boundary Layer Studies)

  • 이재성;박경수;강범주;김영태;배재현;김성수;박정준;최옥인
    • 한국해양학회지:바다
    • /
    • 제15권1호
    • /
    • pp.41-50
    • /
    • 2010
  • 소형선박에서 운영이 가능한 연안용 benthic chamber(BelcI)를 개발했다. 운영상에 유연성이 큰 BelcI는 연안 저층 경계면 연구에 폭넓게 이용될 수 있을 것으로 판단된다. BelcI는 몸체, 자동채수기, 교반기 및 전자제어부로 구성된다. 운영상에 유연성을 극대화하기 위해 몸체는 사각 셀 단위의 2단 구조로 설계했다. 센서신호의 증폭, 교반기 및 채수장치 제어회로를 초 전력 소모 회로로 구성하여 외부 전원장치를 제거했다. PIV(particle image velocimetry)기법으로 측정한 chamber 내부의 유체유통은 전형적인 radial-flow impeller의 특성을 나타냈다. chamber내 물의 혼합 시간은 약 30초로 추정되었으며, 바닥면에서 shear velocity($u^*$)는 약 $0.32\;cm\;s^{-1}$였다. 산경계층(DBL) 두께는 약 $180{\sim}230\;{\mu}m$였다. 현장에서 측정한 산소소모율은 약 $84\;mmol\;O_2\;m^{-2}\;d_{-1}$로 선상배양결과 보다 2배 이상 컸다. 저층 영양염 플럭스는 "질산+아질산"이 $0.18\;{\pm}\;0.07\;mmol\;m^{-2}\;d^{-1}$, 암모니움이 $2.3\;{\pm}\;0.5\;mmol\;m^{-2}\;d^{-1}$, 인산인이 $0.09\;{\pm}\;0.02\;mmol\;m^{-2}\;d^{-1}$, 규산규소가 $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$로 추정되 었다.

전기폭발법에서 SMPS를 이용한 Cu 나노분말의 실시간 입자특성평가 (In-situ Particle Characterization of Cu Nanopowder using Scanning Mobility Particle Sizer in Pulsed Wire Evaporation Method)

  • 이창우;맹덕영;박중학;유지훈;이재훈;이창규;김흥회
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.275-280
    • /
    • 2003
  • Synthesis and characteristics of Cu nanopowder were considered by in-situ characterization method using SMPS in pulsed wire evaporation process. With increasing pressure in chamber, particle size and degree of agglomeration increased by increase of collision frequency. Also, it was found from the XRD analyses and BET measurements that crystallite size and particle size decreased with elevating applied voltage. However, SMPS measurements and TEM observation revealed the increase of particle size and degree of agglomeration with increase of applied voltage. These results suggested that particle growth and agglomeration depend on overheating factor in chamber at the early stage and thermal coagulation in filtering system during powder formation until collection.