Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.5.307

In Situ Heat Treatment of ZnO:Al Thin Films Fabricated by RF Magnetron Sputtering  

Kim, Deok Kyu (Advanced LED Technology Development Project, Samsung Electronics Co. Ltd.)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.5, 2017 , pp. 307-311 More about this Journal
Abstract
ZnO:Al thin films were deposited on glass substrate by RF magnetron sputtering followed by in situ heat treatment in the same chamber. Effects of in situ heat treatment on properties of ZnO:Al thin films were investigated in this study. As heat treatment temperature was increased, crystal quality was improved first and then it was deteriorated, surface roughness was decreased, and sheet resistance was also decreased. The decrease in sheet resistance was caused by increasing carrier concentration due to decreased surface roughness. The decrease in surface roughness resulted in increase of transmittance. Therefore, in situ heat treatment is an effective method for obtaining films with better electrical characteristics.
Keywords
ZnO:Al; RF magnetron sputtering; In situ heat treatment; Surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875 (2003). [DOI: https://doi.org/10.1063/1.1605805]   DOI
2 J. Muller, B. Rech, J. Springer, and M. Vanecek, Solar Energy, 77, 917 (2004). [DOI: https://doi.org/10.1016/j.solener.2004.03.015]   DOI
3 T. Minami, S. Takata, and T. Kakumu, J. Vac. Sci. Technol. A, 14, 1689 (1996). [DOI: https://doi.org/10.1116/1.580320]   DOI
4 T. Minami, Thin Solid Films, 516, 5822 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.10.063]   DOI
5 N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, and M. Brumbach, Thin Solid Films, 445, 342 (2003). [DOI: https://doi.org/10.1016/j.tsf.2003.08.067]   DOI
6 M. Miyazaki, K. Sato, A. Mitsui, and H. Nishimura, J. Non-Crystalline Solids, 218, 323 (1997). [DOI: https://doi.org/10.1016/S0022-3093(97)00241-X]   DOI
7 A. Mosbah and M. S. Aida, J. Alloys Compd., 515, 149 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2011.11.113]   DOI
8 H. Kumarakuru, D. Cherns, and G. M. Fuge, Surf. Coat. Technol., 205, 5083 (2011). [DOI: https://doi.org/10.1016/j.surfcoat.2011.05.011]   DOI
9 P. Baneerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys., 108, 043504 (2010). [DOI: https://doi.org/10.1063/1.3466987]   DOI
10 S. Y. Kuo, K. C. Liu, F. I Lai, J. F. Yang, W. C. Chen, M. Y. Hsieh, H. I. Lin, and W. T. Lin, Microelectronics Reliability, 50, 730 (2010). [DOI: https://doi.org/10.1016/j.microrel.2010.01.042]   DOI
11 C. H. Tseng, W. H. Wang, H. C. Chang, C. P. Chou, and C. Y. Hsu, Vacuum, 85, 263 (2010). [DOI: https://doi.org/10.1016/j.vacuum.2010.06.006]   DOI
12 A. I. Ali, A. H. Ammar, and A. Abdel Moez, Superlattices Microstruct., 65, 285 (2014). [DOI: https://doi.org/10.1016/j.spmi.2013.11.007]   DOI
13 W. F. Yang, Z. Y. Wu, Z. G. Liu, A. S. Pang, Y. L. Tu, and Z. C. Feng, Thin Solid Films, 519, 31 (2010). [DOI: https://doi.org/10.1016/j.tsf.2010.07.048]   DOI
14 B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Reading, Boston, 1978) p. 102.
15 I. W. Kim, S. J. Doh, C. C. Kim, J. H. Je, J. Tashiro, and M. Yoshimoto, Appl. Surf. Sci., 241, 179 (2005). [DOI: https://doi.org/10.1016/j.apsusc.2004.09.087]   DOI
16 Y. Igasaki and H. Saito, Thin Solid Films, 199, 223 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90004-H]   DOI
17 G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]   DOI
18 B. D. Ahn, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim, and S. Y. Lee, J. Cryst. Growth, 309, 128 (2007). [DOI: https://doi.org/10.1016/j.jcrysgro.2007.09.014]   DOI
19 J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci., 257, 2731 (2011). [DOI: https://doi.org/10.1016/j.apsusc. 2010.10.053]   DOI