• Title/Summary/Keyword: in silico docking

Search Result 87, Processing Time 0.027 seconds

Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis

  • Kumar, Satish;Jena, Lingaraja;Galande, Sneha;Daf, Sangeeta;Mohod, Kanchan;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.64-70
    • /
    • 2014
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful source of anticancer therapy. These compounds have been shown to suppress HPV infection by different researchers. In the present study, we explored these natural inhibitors against E6 oncoprotein of high-risk HPV-16, which is known to inactivate the p53 tumor suppressor protein. A robust homology model of HPV-16 E6 was built to anticipate the interaction mechanism of E6 oncoprotein with natural inhibitory molecules using a structure-based drug designing approach. Docking analysis showed the interaction of these natural compounds with the p53-binding site of E6 protein residues 113-122 (CQKPLCPEEK) and helped the restoration of p53 functioning. Docking analysis, besides helping in silico validation of natural compounds, also helps understand molecular mechanisms of protein-ligand interactions.

In-vitro Antimalarial Investigations and Molecular Docking Studies of Compounds from Trema orientalis L. (blume) Leaf Extract

  • Samuel, Babatunde Bolorunduro;Oluyemi, Wande Michael;Okedigba, Ayoyinka Oluwaseun
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • The identification of Plasmodium falciparum enoyl acyl-carrier protein reductase (pfENR) is considered as a potential biological target against malaria. Trema orientalis is considered a rich source of phytochemicals useful in malaria treatment. This study evaluated the in-vitro inhibitory activity of the extract and isolated compounds of T. orientalis leaf; the isolated compounds and the analogues of the most active compound were subjected to in-silico molecular docking studies on pfENR. The methanolic extract of T. orientalis was subjected to repeated chromatographic separation which led to the isolation of some compounds. The isolated compounds from the plant were examined for their antimalarial activity using β-hematin inhibition assay. Virtual screening via molecular docking and ADMET studies were conducted to gain insight into the mechanism of binding of ligand and to identify effective pfENR inhibitors. The isolated compounds and the analogues of the most active isolates were gotten from PubChem library for use in docking study. Hexacosanol and β-sitosterol showed inhibition of the β-hematin formation. The docking results showed that hexacosanol, β-sitosterol and the analogues of β-sitosterol displayed binding energy ranging between -6.1 kcal/mol and -11.6 kcal/mol. Sitosterol glucoside has the highest docking score. Some of the ligands showed more binding affinity than known bioactive compounds used as reference. Analogues of β-sitosterol has been shown to be potential inhibitors of pfENR, therefore, the findings from this study suggest that sitosterol glucoside and ergosterol peroxide could act as antimalarial agents after further lead optimisation investigations.

Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin (울금의 주요 성분인 커큐민과 나노 마이셀링 기법 적용 염화 커큐민의 트랜스타이레틴 활성 부위에 대한 결합 친화도 비교분석)

  • Kim, Dong-Chan;Song, Pyo
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.253-258
    • /
    • 2016
  • In this study, nano-micelled curcumin was produced with natural sea salt with a view to comparing the in silico molecular binding affinity of pure curcumin compound to the active site of transthyretin. Using an optical light microscope and an electron microscope, it was found that the structure of the surface and the cross-section of nano-micelled curcumin was significantly different from natural sea salt. In particular, the crystal structure and nano-components in the nano-micelled curcumin were united, and the layer was more strongly stabilized than untreated salts. In the virtual 3D structure, in silico molecular docking study, the ligand binding affinity of nano-micelled curcumin to the transthyretin active site was found to be higher than that of pure curcumin. In addition, a nano-micelled curcumin formula interacted with more amino acid residues of transthyretin domains. The pharmacophore feature of the nano-micelled curcumin also showed more condensed and constrained features than normal curcumin. These results suggest that nano-micelled curcumin may effectively bind to and stabilize transthyretin, thereby regulating transthyretin-related physiological diseases. Collectively, the nano-micelled curcumin process suggests that normal curcumin can be modified more efficiently into the novel bio-functional chemical formula to stabilize the transthyretin structure. Therefore, the nano-micelled curcumin process can be applied to the field of the regulation of Alzheimer's disease.

Virtual Screening Approaches in Identification of Bioactive Compounds Akin to Delphinidin as Potential HER2 Inhibitors for the Treatment of Breast Cancer

  • Patidar, Kavisha;Deshmukh, Aruna;Bandaru, Srinivas;Lakkaraju, Chandana;Girdhar, Amandeep;Gutlapalli, VR;Banerjee, Tushar;Nayarisseri, Anuraj;Singh, Sanjeev Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2291-2295
    • /
    • 2016
  • Small molecule tyrosine kinase inhibitors targeting HER 2 receptors have emerged as an important therapeutic approach in inhibition of downstream proliferation and survival signals for the treatment of breast cancers. Recent drug discovery efforts have demonstrated that naturally occurring polyphenolic compounds like delphinidin have potential to inhibit proliferation and promote apoptosis of breast cancer cells by targeting HER2 receptors. While delphinidin may thus reduce tumour size, it is associated with serious side effects like dysphonia. Owing to the narrow therapeutic window of delphinidin, the present study aimed to identify high affinity compounds targeting HER2 with safer pharmacological profiles than delphinidin through virtual screening approaches. Delphinidin served as the query parent for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. The compounds retrieved were further subjected to Lipinski and Verber's filters to obtain drug like agents, then further filtered by diversity based screens with a cut off of 0.6. The compound with Pubchem ID: 91596862 was identified to have higher affinity than its parent. In addition it also proved to be non-toxic with a better ADMET profile and higher kinase activity. The compound identified in the study can be put to further in vitro drug testing to complement the present study.

Identification of inhibitors against ROS1 targeting NSCLC by In- Silico approach

  • Bavya, Chandrasekhar
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2022
  • ROS1 (c-ros oncogene) is one of the gene with mutation in NSCLC (non-small cell lung cancer). The increased expression of ROS1 is leading to the increase proliferation of cell, cell migration and survival. Crizotinib and Entrectinib are the drugs that have been approved by FDA against ROS1 protein, but recently patients started to develop resistance against Crizotinib and there is a need of new drug that could act as an effective drug against ROS1 for NSCLC. In this study, we have performed virtual screening, where compounds are taken from Zinc 15 dataset and molecular docking was performed. The top compounds were taken based upon their binding affinity and their interactions with the residues. The compounds stability and chemical reactivity was also studied through Density Functional theory and their properties. Further study of these compounds could reveal the required information of ROS1-inhibitor complex and in the discovery of potent inhibitors.

Molecular docking study of nuciferine as a tyrosinase inhibitor and its therapeutic potential for hyperpigmentation

  • Veerabhuvaneshwari Veerichetty;Iswaryalakshmi Saravanabavan
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2023
  • Melanin is synthesized by tyrosinase to protect the skin from ultraviolet light. However, overproduction and accumulation of melanin can result in hyperpigmentation and skin melanoma. Tyrosinase inhibitors are commonly used in the treatment of hyperpigmentation. Natural tyrosinase inhibitors are often favoured over synthetic ones due to the potential side effects of the latter, which can include skin irritation, allergies, and other adverse reactions. Nuciferine, an alkaloid derived from Nelumbo nucifera, exhibits potent antioxidant and anti-proliferative properties. This study focused on the in silico screening of nuciferine for anti-tyrosinase activity, using kojic acid, ascorbic acid, and resorcinol as standards. The tyrosinase protein target was selected through homology modeling. The residues of the substrate binding pocket and active site pockets were identified for the purposes of grid box optimization and docking. Therefore, nuciferine is a potent natural tyrosinase inhibitor and shows promising potential for application in the treatment of hyperpigmentation and skin melanoma.

In-silico analysis of Lavender oil for Non-small cell lungcancer targeting ROS1

  • Bavya Chandrasekhar
    • Journal of Integrative Natural Science
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2023
  • Lavender oil is a prolonged history in ancient medicine and has a wide range of biological effects. The lavender essential oil has 50 different constituents that have different therapeutic significance. The compounds that are separated from essential oil can be used for the anticancer treatment of non-small cell lung cancer. ROS1 is one of the major targets for NSCLC. The compounds from lavender essential oil are separated through GC-MS. From 91 compounds the top compounds that are having high retention values are taken for Molecular docking study against the ROS1 target protein. The binding affinity and the docked pose for those compounds are studied. Later, the chemical reactivity of the compounds is studied by Density Functional Theory. The potent compounds must be validated by in vivo study.

In - Silico approach and validation of JNK1 Inhibitors for Colon Rectal Cancer Target

  • Bavya, Chandrasekhar;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.145-152
    • /
    • 2022
  • Colon rectal cancer is one of the frequently diagnosed cancers worldwide. In recent times the drug discovery for colon cancer is challenging because of their speedy metastasis and morality of these patients. C-jun N-terminal kinase signaling pathway controls the cell cycle survival and apoptosis. Evidence has shown that JNK1 promotes the tumor progression in various types of cancers like colon cancer, breast cancer and lung cancer. Recent study has shown that inhibiting, JNK1 pathway is identified as one of the important cascades in drug discovery. One of the recent approaches in the field of drug discovery is drug repurposing. In drug repurposing approach we have virtually screened ChEMBL dataset against JNK1 protein and their interactions have been studied through Molecular docking. Cross docking was performed with the top compounds to be more specific with JNK1 comparing the affinity with JNK2 and JNK3.The drugs which exhibited higher binding were subjected to Conceptual - Density functional theory. The results showed mainly Entrectinib and Exatecan showed better binding to the target.

In silico Analysis of Natural Compounds as Modulators of Type I Collagen

  • Narayanaswamy, Radhakrishnan;Wai, Lam Kok;Esa, Norhaizan Mohd;Ismail, Intan Safinar
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2016
  • Collagen plays a vital role in the maintenance of structure and function of a human body. It has been widely applied in various fields including biomedical, cosmeceutical, food, pharmaceutical and tissue engineering. In the present study, the docking behaviour of type I collagen with 15 different ligands namely hydroxymethylfurfural, methylglyoxal, methylsyringate, O-methoxyacetophenone, 3-phenyllactic acid, 4-hydroxybenzoic acid, kojic acid, lumichrome, galangin, artoindonesianin F, caffeic acid, 4-coumaric acid, origanol A, thymoquinone and quercetin was evaluated along with their putative binding sites using Discovery Studio Version 3.1. Docking studies and binding free energy calculations revealed that origanol A has maximum interaction energy (-40.48 kcal/mol) and quercetin with the least interaction energy (-15.44 kcal/mol) as compared to the other investigated ligands. Three ligands which are galangin, methylsyringate and origanol A were shown to interact with Asp21 amino acid residue of chain B (type I collagen). Therefore, it is strongly suggested that the outcomes from the present study might provide new insight in understanding these 15 ligands as potential type I collagen modulators for the prevention of collagen associate disorders.

In Silico Docking Studies of Selected Flavonoids - Natural Healing Agents against Breast Cancer

  • Suganya, Jeyabaskar;Radha, Mahendran;Naorem, Devi Leimarembi;Nishandhini, Marimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8155-8159
    • /
    • 2014
  • Background: Breast cancer is the serious health concern in India causing the highest mortality rate in females, which occurs due to uncontrolled cell division and can be metastasize to other parts of the human body. Interactions with estrogen receptor (ER) alpha are mainly responsible for the malignant tumors with regulation of the transcription of various genes as a transcription factor. Most of the drugs currently used for the breast cancer treatment produce various side effects and hence we focused on natural compounds which do not exhibit any toxic effect against normal human cells. Materials and Methods: Structure of human ER was retrieved from the Protein Data Bank and the structures of flavonoid compounds have been collected from PubChem database. Molecular docking and drug likeness studies were performed for those natural compounds to evaluate and analyze the anti-breast cancer activity. Results: Finally two compounds satisfying the Lipinski's rule of five were reported. The two compounds also exhibited highest binding affinity with human ER greater than 10.5 Kcal/mol. Conclusions: The results of this study can be implemented in the drug designing pipeline.