• Title/Summary/Keyword: in pipe

Search Result 5,779, Processing Time 0.035 seconds

A Study on the development of transfer system of cutting punched pipes. (타공파이프 절단을 위한 이송시스템 개발에 관한 연구)

  • Park, J.S.;Yoon, D.H.;Jung, C.S.;Kim, Y.S.;Yang, S.Y.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.66-69
    • /
    • 2010
  • A punched pipe in a muffler for an automobile has many important variables, like location of holes in the pipe and length of the pipe related to noise reduction of a diffuser. This pipe is cut depending on length of product and this process, generally workers cut pipes by hands. In this process, there are many errors and it relies on the skill of workers, so it can happen that cycle time for complete product gets long and productivity gets low. Therefore, we need a vision system to distinguish holes in the punched pipe and a transfer system to set the cutting position automatically by moving the pipe depending on forward and backward part of the holes. This paper explains the development of an automatic transfer device which will cause the beating pipe to be cut correctly, exactly the same length as the product.

  • PDF

Experimental Study of Thermal Performance of Heat Pipe with Axial Trapezoidal Grooves (축방향 사다리꼴 그루브 히트파이프의 열성능에 대한 실험적 연구)

  • Suh, Jeong-Se;Lee, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2003
  • Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves. 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations fur heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases. the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment.

A study on the Analyses of T-branch Pipe Forming using a Finite Element Method (유한요소법을 이용한 분기배관의 성형해석에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Lim, Kwang-Kyu;SaKong, Seong-Ho;So, Soo-Hyun;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.98-105
    • /
    • 2007
  • On this study, we verified the possibilities of making T-branch pipe forming with carbon steel pipes and stainless steel pipes used by common FEM Program(ABAQUS) which are widely used in the fire protection and building construction fields. In this kind of T-branch pipe forming works, in principle, the seamless pipe is used. If the pipe has the seam, the forming face must be the opposite side of the seam. The forming works are carried out by a truncated cone shaped plug. We found that the face slope and the length of plug are the most important factor in pipe forming. Based on the results of forming analyses, we proposed the minimum height and thickness of pipe branch forming.

A Study on Noise and Vibration Characteristics of Pipe Structures (파이프 구조물의 소음 및 진동특성 연구)

  • 류봉조;임경빈;이규섭;송영봉;공용식;오부진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.334-337
    • /
    • 2002
  • The paper presents noise and vibration characteristics of three kinds of pipe materials (PVC pipe, cast-iron pipe and newly developed pp pipe). In order to measure structure bone noise, impact force using small balls was applied to earth pipe. It was confirmed that structure bone noise can be reduced by more large damping materials. Also, transmission loss of pipes depending on the frequency ranges was investigated by using sound source through speakers.

  • PDF

A Study on the Improvement of Efficiency of Heat Transfer of Double Pipe Heat Exchanger with Helical Insert Device on Cooling of a Fuel Cell (연료전지 냉각용 헬리컬 인서트디바이스 이중관열교환기의 열전달 성능 향상에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1872-1879
    • /
    • 2015
  • The present study was conducted on the improvement of the heat transfer performance of double pipe heat exchangers with helical insert device. Double pipe heat exchangers with helical insert device were studied for improvement of the heat transfer performance of double pipe heat exchangers with helical insert device and plain double pipe heat exchangers were also studied to comparatively analyze heat transfer performance. Experimental results were derived on changes in the Reynold's numbers of the cooling water flowing in helical and plain double pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical total energy and the experimental total energy were comparatively analyzed and the following results were derived. The thermal energy of the calorie lost by the hot air and that of the calorie obtained by the cooling water were well balanced. The experiments of plain double pipe heat exchangers and double pipe heat exchangers with helical insert device were conducted under normal conditions and the theoretical overall heat transfer coefficient value and the experimental overall heat transfer coefficient value coincided well with each other. In both plain double pipe heat exchangers and double pipe heat exchangers with helical insert device, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of double pipe heat exchangers with helical insert device was shown to be higher by approximately 1.5 times than that of plain double pipe heat exchangers.

Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material (관재료 및 피복재료별 농경지 암거배수 효과 분석)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.53-61
    • /
    • 1995
  • Analyses of subsurface drainage effects of farmland with respect to pipe and envelop material are made by the laboratory experiments using soil box to give basic information for the subsurface drainage system planning and design. Three different diameter PVC perforated pipes and a mesh pipe are used with envelop materials such as sand, rice bran, and crushed stone. Steady state subsurface drainage flow rate increased as envelop material changed from sand to rice bran and crushed stone. This indicates that as the hydraulic conductivity of the envelop material increases, the drainage flow rate increases. On the other hand, for a given envelop material, the mesh pipe which has the largest openning area shows the largest flow rate while small diameter PVC pipes show small flow rates. This tells that as the openning area and pipe diameter increase, the flow rate increases, too. Therefore, selection of pipe and envelop material should be made in accordance with the design drainage flow rate. Unsteady state subsurface drainage flow rate with respect to time differs for different envelop material. In case the sand was used as an envelop material, the small diameter PVC pipes show larger flow rates than the large diameter PVC pipe and mesh pipe. When the rice bran was used, the mesh pipe shows the largest flow rate, while small diameter pipes show smaller flow rates. In case the crushed stone was used as an envelop material, the large diameter PVC pipe and mesh pipe show larger flow rates, while small diameter pipes show a little bit smaller flow rates. However, the variation of flow rates among different pipes is the smallest when the crushed stone is used. The flow rate curve with respect to the pipe changes little for the crushed stone envelop which has a large hydraulic conductivity, while that changes much for the sand and rice bran envelops. However, it is difficult to draw a consistent relationship between the drainage flow rate and pipe for all the envelop materials. Since the subsurface drainage experiments are made only under the restricted laboratory condition in this study, further study including field experiment is required.

  • PDF

Development of A Friction Type Garlic Separator (마찰식 박피마늘 선별기 개발)

  • Park, J.B.;Kim, J.T.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 1994
  • Both the wet and dry types of garlic peeling machines are being presently used in domestic garlic processing factory, but the dry type is more popular than the wet type because of higher peeling efficiency. The peeling efficiency of these machines is estimated 50 to 80%, depending on the difference in garlic varieties, physical properties and moisture content of garlic samples. If the peeling time is increased in order to improve the peeling efficiency, the damage on the surface of peeled garlic and the consumption of electric power are also increased. This study was carried out to solve these problems in garlic peeling operation and to obtain the optimun design factor for the friction type separator. The results are summarized as follows : 1. The average friction coefficients of peeled and unpeeled garlic samples were 0.91 and 0.51. respectively, for the acrylic plate, and 0.96 and 0.51, respectively, for the stainless plate. 2. For the inclined acrylic pipe with the pipe length 90 cm, the inclined angle $39^{\circ}$ and the pipe diameter 45-55 mm, the falling time of peeled garlic samples was 0.2 sec, faster than unpeeled garlic samples. 3. For the inclined stainless pipe with the pipe length 90 cm, the inclined angle $34^{\circ}$, $39^{\circ}$ and the pipe diameter pipe 35 mm, the falling time of peeled garlic samples was 0.7 sec, slower than that with the pipe diameter 47mm. 4. The stainless pipe with the pipe length 80~90 cm, the inclined angle $39^{\circ}{\sim}40^{\circ}$ and the pipe diameter 40~50 mm was the most suitable as the material of friction pipe. 5. Experimental garlic peeling machine is composed of garlic sample feeding device, friction stainless pipe and hopper. The peeling efficiency was 81 to 96%, and the separating capacity, 600 gr/min.

  • PDF

Evaluation of Flow Characteristics in Water Supply Pipes Shielding Electromagnetic Pulse of 100 dB with Concentric and Eccentric Reducers (Concentric Reducer와 Eccentric Reducer를 사용한 EMP 차폐 100dB급 급수관의 유동특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, the flow characteristics of water in the water supply pipes of a WBC array were evaluated. We simulated the flow velocities and pressures for a standard pipe, an expansion pipe with a concentric reducer, and an expansion pipe with an eccentric reducer using computational fluid dynamics. In the case of the standard pipe, when the inlet flow velocities were 0.5 m/s and 2.0 m/s, the maximum flow velocities at the center of the WBC array were 0.54 m/s and 2.74 m/s, respectively, which were the greatest values among those of all the pipe models considered. In the case of the expansion pipe, the maximum flow velocities at the center of the WBC array were almost the same under the same conditions regardless of the type of reducer. The pressure losses in the pipe due to the concentric and eccentric reducers were found to be (165.09 ${\times}$ inlet $velocity^{1.6677}$) and (210.98 ${\times}$ inlet $velocity^{1.6478}$), respectively. The coefficient of determination at this time was greater than 0.99 and was the same for both the models. As a simulation result, it was found that in order to reduce the pressure loss when pipe with WBC array is connected with a conventional pipe, diameter of the pipe with WBC array at that section should be enlarged by one step, and then connected to the conventional pipe with a concentric reducer.

Effect of Horizontal Connection and Slope on Buckling Characteristics of Single Pipe (단관 파이프의 좌굴특성에 대한 수평연결재 및 기울기의 영향)

  • Lee, Jin Seop;Lee, Yeon Su;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.48-55
    • /
    • 2015
  • The number of collapse accidents relevant to form support since 2003 is 30 on the basis of statistical data from Ministry of Employment and Labor,. Total number of casualty was 138 (47 for deaths and 91 for injuries). The accident severity rate was high because the 4.6 casualties per one accident were occurred averagely although the incident rate was relatively low. Especially, one of form support members, the pipe supports have not been equipped adequately so that the accidents could have happened. In this regard, this study performed buckling test related to the effect of horizontal connection and slope in the single pipe which is one of typical pipe supports. The buckling load, which was estimated from the single pipe with the horizontal connectors theoretically and experimentally, was increased as more than 2 times compared to the buckling load obtained from the pipe supports without the connector. The buckling load was reduced as more than 26%, 34% slope of the single pipe comparing with 5% and 10% slope, respectively. Thus, the purpose of this study is to provide the guideline for installation and the maintenance of the pipe supports legally and institutionally to prevent the collapse accidents of the pipe supports.

Dynamic Characteristics of Cantilever Pipe Conveying Fluid with Moving Mass Considering Nozzle Angle (노즐 경사각을 고려한 이동질량을 가진 유체이송 외팔 파이프의 동특성 해석)

  • 윤한익;손인수;김현수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.18-24
    • /
    • 2002
  • The vibrational system in this study consists of a cantilever pipe conveying fluid, the moving mass upon it, and an attached tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the velocity and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a cantilever pipe using a numerical method. While the moving mass moves upon the cantilever pipe, the velocity of fluid flow and the nozzle angle increase; as a result, the tip displacement of the cantilever pipe, conveying fluid, is decreased. After the moving mass passes over the cantilever pipe, the tip displacement of the pipe is influenced by the potential energy of the cantilever pipe and the deflection of the pipe; the effect is the result of the moving mass and gravity. As the velocity of fluid flow and nozzle angle increases, the natural frequency of he system is decreased at the second mode and third mode, but it is increased at the first mode. As the moving mass increases, the natural frequency of the system is decreased at all modes.