• Title/Summary/Keyword: in -vehicle

Search Result 17,956, Processing Time 0.035 seconds

Study on Undergraduate-Driven Autonomous Vehicle Competition (대학생 자율주행자동차 경진항목 연구)

  • Choi, Gyeung Ho;Lee, Jae-Cheon;Ahn, Sang Ho;Cho, Kwang Sang;Oh, Youkeun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.26-31
    • /
    • 2017
  • The current autonomous vehicle competitions are dominated by a few leading research institutions and universities. Since the leading research groups have been able to accumulate their knowledge and to develop their own algorithms for autonomous vehicle for many years, the technology gap seems too big for other followers to catch up with. On the other hand, recent researches predict that there would be a sharp rise in demand for engineers with background in autonomous vehicle technology. Therefore, it would be warranted to further expand the base of the academia and autonomous vehicle industry. In an effort to achieve this goal, it would be beneficial to hold a new format of autonomous vehicle competition event where undergraduate students can play a leading role. So, this study is to analyze the current autonomous vehicle competitions and thus to establish a strategic plan to develop a unique and improved competition event. This study investigates the pros and cons of the domestic and international autonomous vehicle competitions. Based on the analysis for the current autonomous vehicle competitions, the authors suggest a strategic plan to initiate an autonomous vehicle competition. To implement the aforementioned strategic plan, it is necessary to develop a systematic environment where the education and communication are actively available. Through the strategic plan the authors propose, the newly launching autonomous vehicle competition will able to encourage the undergraduate students and professors to dive in the cutting-edge technology thereby increasing technology competitiveness.

Design of an In-vehicle Intelligent Information System for Remote Management (차량 원격 진단 및 관리를 위한 차량 지능 정보시스템의 설계)

  • Kim, Tae-Hwan;Lee, Seung-Il;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1023-1026
    • /
    • 2005
  • In the ubiquitous computing environment, an intelligent vehicle is defined as a sensor node with a capability of intelligence and communication in a wire and wireless network space. To make it real, a lot of problems should be addressed in the aspect of vehicle mobility, in-vehicle communication, common service platform and the connection of heterogeneous networks to provide a driver with several intelligent information services beyond the time and space. In this paper, we present an intelligent information system for managing in-vehicle sensor network and a vehicle gateway for connecting the external networks. The in-vehicle sensor network connected with several sensor nodes is used to collect sensor data and control the vehicle based on CAN protocol. Each sensor node is equipped with a reusable modular node architecture, which contains a common CAN stack, a message manager and an event handler. The vehicle gateway makes vehicle control and diagnosis from a remote host possible by connecting the in-vehicle sensor network with an external network. Specifically, it gives an access to the external mobile communication network such as CDMA. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixed place, 707ms at rural area and 910ms at urban area.

  • PDF

Analysis on the Fire Accident of Vehicle Due to Damage of the Vehicle's Electrical Components (차량 전장부품 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.32-38
    • /
    • 2015
  • In this paper, we analyzed the vehicle fire accidents due to damage of vehicle's electrical components, which is applied to a vehicle. In recent development of electrical components technology, approximately 40% of vehicle manufacturing parts have applied electronic circuit technology. Phenomenon such deterioration of insulating performance or electric breakdown on the vehicle's electrical components and printed circuit boards(PCBs) resulted from moisture, contamination and aging due to repetitive operations, lead to the vehicle fire. Therefore, the application of electrical components with adequate electric capacity for vehicle and usage of molding techniques using a non-combustible materials to shut off the oxygen should be applied in order to prevent vehicle fire due to damage of the electrical components and PCBs.

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

A Control Method of Driving a Paddy Vehicle Straight Ahead for Automatic Operation

  • Nagasaka, Yoshisada;Shigeta, Kazuto;Sato, Junichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1055-1062
    • /
    • 1996
  • A method for automatically driving paddy vehicles, such as rice transplanters, etc., straight ahead in a paddy field was investigated . The direction of such vehicles must be precisely controlled to do the operations as straight. However, the alignment of the from wheels becomes distorted due to the unevenness of the ground, preventing the vehicle form going straight. If the proper alignment of the front wheels is maintained , the vehicle can be driven straight ahead greater precision. To investigate the influence of the ground uneveness, the behavior of a paddy vehicle running over an obstacle was quantified. The left wheel ran over an obstacle on a flat concrete road surfaced. When the steering wheel was free, the front wheels were forced toward the left when vehicle went up the obstacle and toward the right when the vehicle went down it. The torsion of the wheel when the vehicle went down the obstacle was larger than that when it went up ,so it turned right 5 degrees. Sinc hydraulic control steering decreased the steering angle , it turned right 3 degrees. These results suggest that a vehicle can be driven straight ahead with high precision when the steering angle is changed in response to the direction and inclination of the vehicle . Such results were obtained in a paddy field tests.

  • PDF

The implementation of a Lateral Controller for the Mobile Vehicle using Adaptive Fuzzy Logics (적응퍼지논리를 이용한 Mobile Vehicle의 횡방향 제어기 구현)

  • Kim, Myeong-Jung;Lee, Chang-Gu;Kim, Seong-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.249-256
    • /
    • 2000
  • This paper deals with the control of the lateral motion of a mobile vehicle. A mobile vehicle using in this experiment is able to adapt many unmanned automatic driving system, for example, like a automated product transporting system. This vehicle is consist of the two servomotors. One is used to accelerate this vehicle and the another is used to change this lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral direction. An adaptive fuzzy logic controller(AFLC) is designed and applied to a experimental mobile vehicle in order to achieve the control of the lateral motion of the vehicle. Therefore, the main aim of this paper is investigate the possibility of applying adaptive fuzzy control algorithms to a microprocessor-based servomotor controller which requires faster and more accurate response compared with many other industrial processes. Fuzzy control rules are derived by modelling an expert's driving actions. Experiments are performed using a mobile vehicle with sensing units, a microprocessor and a host computer.

  • PDF

Vehicle Tracking using Parametric Active Contour (Parametric Active Contour를 이용한 Vehicle Tracking)

  • 나상일;이웅희;조익환;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1411-1414
    • /
    • 2003
  • In this paper, vehicle tracking is implemented using parametric active contour. Extract objects from the background area is the essential step in vehicle tracking. We focus our algorithm on the situations such that the camera is fixed. However, if a simple and ordinary algorithm is adapted to achieve real-time processing, it produces much noise and the vehicle tracking results is poor. For this reason, in this paper, we propose a parametric active contour model algorithm to achieve better vehicle tracking. Experimental results show that the performance of the proposed algorithm is satisfactory.

  • PDF

The State of the art and Future Research Subjects of Vehicle Fleet Scheduling System in Korea and Foreign country (국내외 배차계획시스템의 연구 현황 및 추후 과제)

  • 박영태;강승우
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2003.02a
    • /
    • pp.109-120
    • /
    • 2003
  • As the logistics industrial environment becomes more complex and its scale becomes increase, the vehicle fleet scheduling system has become recognized the necessity as a major strategy in the logistics field. The vehicle fleet scheduling system is computerized package that find the vehicle routes and schedules to accomplish the required service to customers using vehicles. This paper introduces the state of the art of vehicle fleet scheduling system in Korea and foreign country and the future research subject are presented.

  • PDF

Improvement of Vehicle Classification Method using Vehicle Height Measurement (차량높이 계측을 통한 차종분류 향상 방안 연구)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-51
    • /
    • 2010
  • A vehicle classification data is essential for traffic road planning and pavement. In this study, the vehicle height, vehicle criteria for classification applied to measure the height of the car driving has devised a way to install equipment. It is capable of measuring the vehicle height was confirmed to field experiments, the measurement system is obtained to the vehicle length and height data. In this experiment, results showed the accuracy of 88.6% compared to classification data using the discriminant function obtained from video replaying. The height of vehicle applying the classification criteria can be utilized to determine the vehicle class.

Long Distance Vehicle Recognition and Tracking using Shadow (그림자를 이용한 원거리 차량 인식 및 추적)

  • Ahn, Young-Sun;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.251-256
    • /
    • 2019
  • This paper presents an algorithm for recognizing and tracking a vehicle at a distance using a monocular camera installed at the center of the windshield of a vehicle to operate an autonomous vehicle in a racing. The vehicle is detected using the Haar feature, and the size and position of the vehicle are determined by detecting the shadows at the bottom of the vehicle. The region around the recognized vehicle is determined as ROI (Region Of Interest) and the vehicle shadow within the ROI is found and tracked in the next frame. Then the position, relative speed and direction of the vehicle are predicted. Experimental results show that the vehicle is recognized with a recognition rate of over 90% at a distance of more than 100 meters.