• Title/Summary/Keyword: impurity effect

Search Result 267, Processing Time 0.026 seconds

Self-consistent electronic structure of impurities using the recursion method

  • Park, Jin-Ho;Cho, Hwa-Suck;Lee, Gun-Woo
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.13-19
    • /
    • 1998
  • We have calculated the electronic structure of impurity atoms in metal host by using the tight binding model in the recursion method. For a self-consistent calculation, we assumed that the effect of impurity introduction was localized only at the impurity site and its neighbours. We calculated the Madelung term by limiting the contribution to Vm of the charge perturbations to the first shell around the impurity with Evjen technique. The calculated local density of states and charge transfer values have been compared with the experimental values for a single impurity in metal host. We fund that d-reso-nance state came from the repulsive interaction between impurity d-state and host band, and the position of d-resonance state depended on the difference of valence electrons between the host and the impurity. the results also showed that the charge transfer value between an impurity and host metal was comparable to the ionicity difference between them.

Effects of Al Impurity on Magnetism in bcc Fe by a First-principles Calculation

  • Seo, Seung-Woo;Rahman, Gul;Kim, In-Gee
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.72-73
    • /
    • 2009
  • First-principles calculations were carried out to investigate the effects of Al impurities on bcc Fe magnetism by considering SOC. No significant solid solution hardening effect was found. Albeit the effects of the SOC by Al on spin magnetic moments were minor, there are sizeable orbital magnetic effects. It is concluded that the orbital magnetism due to the Al impurity is strongly related with the impurity screening of the system as seen in Si impurity case [3], but the effects of Al impurity is stronger than those of Si impurity in terms of orbital magnetism.

  • PDF

A study on the effect of material impurity concentration on radioactive waste levels for plans for decommissioning of nuclear power plant

  • Gilyong Cha;Minhye Lee;Soonyoung Kim;Minchul Kim;Hyunmin Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2489-2497
    • /
    • 2023
  • Co and Eu impurities in the SSCs are nuclides that dominantly influence the neutron-induced radioactive inventory in metal and concrete radwastes (radioactive wastes) during NPP decommission. The impurity concentrations provided by NUREG/CR-3474 were used for the practical range of Co and Eu impurity concentrations to be applied to the code calculations. Metal structures near the core were evaluated to be ILW (intermediate-level waste) for the whole range of Co impurity concentration, so the boundary line between ILW and LLW (low-level waste) has no change for the whole concentration range provided by NUREG/CR-3474. Also, the boundary line between VLLW (very low-level waste) and CW (clearance waste) in the concrete shield could alter a little depending on the Eu impurity concentration within the range provided by NUREG/CR-3474. From this work, it is found that the concentration of material impurities of SSCs gives no critical impact on determining radwaste levels.

The Influence of Alkaline Impurity K Content on Bubbles of Quartz Glass

  • Yeom, Ho Jong;Im, Hangjoon;Lee, Joo Ho;Song, Jun Baek;Kim, Yeong Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.298-302
    • /
    • 2017
  • To investigate the influence of alkaline impurity K content on bubbles of quartz glass, samples were prepared based on $SiO_2$ sand with differing amounts of potassium hydroxide solution added by electric fusion. Bubble properties such as number, diameter and bubble fraction were determined using a stereoscopic microscope. The results of the observations indicated that an alkaline impurity content of 100 ppm had a good effect on bubble decline in quartz glass. The effect on OH was investigated by FTIR(Fourier transform infrared spectroscopy).

A Study on the Contamination of D.I. Water and its Effect on Semiconductor Device Manufacturing (초순수의 오염과 반도체 제조에 미치는 영향에 대한 연구)

  • Kim, Heung-Sik;Yoo, Hyung-Won;Youn Chul;Kim, Tae-Gak;Choi, Min-Sung
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.99-104
    • /
    • 1993
  • We analyzed the D.I. water used in wet cleaning process of semiconductor device manufacturing both at the D.I. water plant and at the wafer cleaning bath to detect the impurity source of D.I. water contamination. This shows that the quantity of impurity is related to the resistivity of D.I. water, and we found that the cleanliness of the wafer surface processed in D.I. water bath was affected by the degree of the ionic impurity contamination. So we evaluated the cleaning effect as different method for Fe ion, having the best adsoptivity on wafer surface. Moreover the temperature effect of the D.I. water is investigated in case of anion in order to remove the chemical residue after wet process. In addition to the control of D.I. water resistivity, chemical analysis of impurity control in D.I. water should be included and a suitable cleaning an drinsing method needs to be investigated for a high yielding semiconductor device.

  • PDF

Effect of the Residual Impurity on the Prepreg Surface on the Wettability of Encapsulant for Chip on Board Package (칩 온 보드 패키지 적용을 위한 프리프레그 표면 잔류 불순물이 봉지재의 젖음성에 미치는 영향)

  • Gahui Kim;Doheon Kim;Kirak Son;Young-Bae Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.9-15
    • /
    • 2024
  • The effect of the residual impurity on the prepreg surface on the wettability of encapsulant for chip on board package was analyzed with microstructure, compositions and chemical bonds using a scanning electron microscope and X-ray photoelectron spectroscopy. As a result, the contact angle of w/ residual impurity sample was measured to be 28° higher than that of w/o residual impurity sample, and the C-O bond was decreased to be 4% lower than that of w/o residual impurity sample. The surface energy of the prepreg decreased because the impurity ions, Na and F, generated by the manufacturing process and wet etching, reacted chemically with the C on the prepreg surface, forming C-F bonds and breaking the C-O bonds on the prepreg surface. Therefore, the wettability of the encapsulant was degraded because the contact angle between the encapsulant and the prepreg was increased.

Analysis and Calibration of Transient Enhanced Diffusion for Indium Impurity in Nanoscale Semiconductor Devices

  • Lee Jun-Ha;Lee Hoong-Joo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.1
    • /
    • pp.18-22
    • /
    • 2005
  • We developed a new systematic calibration procedure and applied it to the calibration of the diffusivity, segregation and TED model of the indium impurity. The TED of the indium impurity was studied under 4 different experimental conditions. Although the indium proved to be susceptible to the TED, the RTA was effective in suppressing the TED effect and in maintaining a steep retrograde profile. Just as in the case of boron, indium demonstrated significant oxidation-enhanced diffusion in silicon and its segregation coefficients at the Si/SiO₂ interface were significantly below 1. In contrast, the segregation coefficient of indium decreased as the temperature increased. The accuracy of the proposed technique has been validated by SIMS data and 0.13-㎛ device characteristics such as Vth and Idsat with errors less than 5% between simulation and experiment.

Characterization of Two-Dimensional Impurity Profile in Silicon (실리콘에서의 2차원적 불순물 분포의 산출)

  • Yang, Yeong Yil;Kyung, Chong Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.929-935
    • /
    • 1986
  • In this paper, we describe the physical modelling and numerical aspects of a program called PRECISE(Program for Efficient Calculation of Impurity Profile in Semiconductor by Elimination) which calcualtes a two-dimensional impurity profile in silicon due to diffusion and ion implantation steps. The PRECISE enables rapid prediction of the two-dimensional impurity profile near the mask edge-or the bird's beak during the local oxidation process. This has been developed by modifying the existing one-dimentional simulator, DIFSIM(DIFfusion SIMulator to include models for arsenic diffusion and emitter dip effect which were found out to agree fairly well with the xperimental data.

  • PDF

Calculation on Effect of Impurity Addition on Electronic State of $MnO_2$ Oxide Semiconductor by First Principle Moleculat Orbital Method (제1원리 분자궤도계산법에 의한 $MnO_2$ 산화물 반도체의 전자상태에 미치는 불순물 첨가 효과의 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung;Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.99-102
    • /
    • 2003
  • The electronic structure of ${\beta}-MnO_2$ having impurities in the site of Mn was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}MO_{56}]^{-52}$ (M = transient metals). Madelung potential and spin polarization were considered for more exact calculations. As results of calculations, the energy levels of all electron included in the model were obtained. The energy band gap and positions of impurity levies were discussed in association with impurity 34 orbital that seriously affect electrical properties of $MnO_2$. It was shown that the energy band gap decreased with the increase of the atomic number of transient metal impurity.

  • PDF

Impurity analysis of Ta films using secondary ion mass spectrometry (이차이온 질량분석기를 이용한 탄탈 박막내의 불순물 분석)

  • ;;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Ta films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -125 V ($V_{s}$ = -125 V) using a non-mass separated ion beam deposition system. To investigate the effect of the negative substrate bias voltage on the impurity concentration in the Ta films, secondary ion mass spectrometry (SIMS) was used to determine impurities in the Ta films. By the SIMS depth profiles with $Cs^{+}$ cluster ion beam, high intensities of O, C and Si were clearly found in the Ta film at $V_{s}$ = 0 V, whereas these impurities remarkably decreased in the Ta film at $V_{s}$ = -125 V. Furthermore, from the SIMS result with $Cs^{+}$ and $O_2^{+}$ ion beams, it was found that applying the negative substrate bias voltage could affect individual impurity contents in the Ta films during the deposition. Discussions concerning the effect of the negative substrate bias voltage on the impurity concentration of Ta films will be described in details.