• Title/Summary/Keyword: impulsive boundary value problems

Search Result 5, Processing Time 0.018 seconds

MONOTONE ITERATION SCHEME FOR IMPULSIVE THREE-POINT NONLINEAR BOUNDARY VALUE PROBLEMS WITH QUADRATIC CONVERGENCE

  • Ahmad, Bashir;Alsaedi, Ahmed;Garout, Doa'a
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1275-1295
    • /
    • 2008
  • In this paper, we consider an impulsive nonlinear second order ordinary differential equation with nonlinear three-point boundary conditions and develop a monotone iteration scheme by relaxing the convexity assumption on the function involved in the differential equation and the concavity assumption on nonlinearities in the boundary conditions. In fact, we obtain monotone sequences of iterates (approximate solutions) converging quadratically to the unique solution of the impulsive three-point boundary value problem.

ON IMPULSIVE SYMMETRIC Ψ-CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.851-863
    • /
    • 2023
  • We study the appropriate conditions for the findings of uniqueness and existence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-instantaneous conditions in this paper. The findings are based on the fixed point theorem of Krasnoselskii and the Banach contraction principle. Finally, the application is provided to validate our primary findings.

EXISTENCE OF SOLUTIONS OF A CLASS OF IMPULSIVE PERIODIC TYPE BVPS FOR SINGULAR FRACTIONAL DIFFERENTIAL SYSTEMS

  • Liu, Yuji
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.205-230
    • /
    • 2015
  • A class of periodic type boundary value problems of coupled impulsive fractional differential equations are proposed. Sufficient conditions are given for the existence of solutions of these problems. We allow the nonlinearities p(t)f(t, x, y) and q(t)g(t, x, y) in fractional differential equations to be singular at t = 0, 1 and be involved a sup-multiplicative-like function. So both f and g may be super-linear and sub-linear. The analysis relies on a well known fixed point theorem. An example is given to illustrate the efficiency of the theorems.

EXISTENCE RESULTS FOR ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF NONLINEAR SECOND-ORDER IMPULSIVE qk-DIFFERENCE EQUATIONS

  • Ntouyas, Sotiris K.;Tariboon, Jessada;Thiramanus, Phollakrit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.335-350
    • /
    • 2016
  • Based on the notion of $q_k$-derivative introduced by the authors in [17], we prove in this paper existence and uniqueness results for nonlinear second-order impulsive $q_k$-difference equations with anti-periodic boundary conditions. Two results are obtained by applying Banach's contraction mapping principle and Krasnoselskii's fixed point theorem. Some examples are presented to illustrate the results.