• Title/Summary/Keyword: improving accuracy

Search Result 1,531, Processing Time 0.026 seconds

Image Restoration Method using Denoising CNN (잡음제거 합성곱 신경망을 이용한 이미지 복원방법)

  • Kim, Seonjae;Lee, Jeongho;Lee, Suk-Hwan;Jun, Dongsan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Although image compression is one of the essential technologies to transmit image data on a variety of surveillance and mobile healthcare applications, it causes unnecessary compression artifacts such as blocking and ringing artifacts by the lossy compression in the limited network bandwidth. Recently, image restoration methods using convolutional neural network (CNN) show the significant improvement of image quality from the compressed images. In this paper, we propose Image Denoising Convolutional Neural Networks (IDCNN) to reduce the compression artifacts for the purpose of improving the performance of object classification. In order to evaluate the classification accuracy, we used the ImageNet test dataset consisting of 50,000 natural images and measured the classification performance in terms of Top-1 and Top-5 accuracy. Experimental results show that the proposed IDCNN can improve Top-1 and Top-5 accuracy as high as 2.46% and 2.42%, respectively.

Classification of COVID-19 Disease: A Machine Learning Perspective

  • Kinza Sardar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.107-112
    • /
    • 2024
  • Nowadays the deadly virus famous as COVID-19 spread all over the world starts from the Wuhan China in 2019. This disease COVID-19 Virus effect millions of people in very short time. There are so many symptoms of COVID19 perhaps the Identification of a person infected with COVID-19 virus is really a difficult task. Moreover it's a challenging task to identify whether a person or individual have covid test positive or negative. We are developing a framework in which we used machine learning techniques..The proposed method uses DecisionTree, KNearestNeighbors, GaussianNB, LogisticRegression, BernoulliNB , RandomForest , Machine Learning methods as the classifier for diagnosis of covid ,however, 5-fold and 10-fold cross-validations were applied through the classification process. The experimental results showed that the best accuracy obtained from Decision Tree classifiers. The data preprocessing techniques have been applied for improving the classification performance. Recall, accuracy, precision, and F-score metrics were used to evaluate the classification performance. In future we will improve model accuracy more than we achieved now that is 93 percent by applying different techniques

Intelligent recommendation method of intelligent tourism scenic spot route based on collaborative filtering

  • Liu Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1260-1272
    • /
    • 2024
  • This paper tackles the prevalent challenges faced by existing tourism route recommendation methods, including data sparsity, cold start, and low accuracy. To address these issues, a novel intelligent tourism route recommendation method based on collaborative filtering is introduced. The proposed method incorporates a series of key steps. Firstly, it calculates the interest level of users by analyzing the item attribute rating values. By leveraging this information, the method can effectively capture the preferences and interests of users. Additionally, a user attribute rating matrix is constructed by extracting implicit user behavior preferences, providing a comprehensive understanding of user preferences. Recognizing that user interests can evolve over time, a weight function is introduced to account for the possibility of interest shifting during product use. This weight function enhances the accuracy of recommendations by adapting to the changing preferences of users, improving the overall quality of the suggested tourism routes. The results demonstrate the significant advantages of the approach. Specifically, the proposed method successfully alleviates the problem of data sparsity, enhances neighbor selection, and generates tourism route recommendations that exhibit higher accuracy compared to existing methods.

Improving Cognitive Abilities for People with Alzheimer's Disease: Application and Effect of Reality Orientation Therapy (ROT) (알츠하이머병 치매 환자의 인지재활: 현실감각훈련(ROT)의 적용과 효과)

  • Kim, JungWan
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.27-38
    • /
    • 2013
  • Healthcare providers in Korea are using conservative pharmacological treatment for Alzheimer's disease (AD) to delay the progress of the disease or to mitigate its behavioral and neurological symptoms. However, there is a growing need for interventions using practical non-pharmacologic treatment, as the effects of pharmacological treatments has faced limitations. This research provided a cognitive rehabilitation program to 3 AD patients and used a multiple baseline design across subjects to examine the effects. Performing reality orientation therapy (ROT) for 1 cycle (4 weeks) resulted in a slight increase in accuracy and responsiveness on an orientation task, mainly with patients with mild cases of AD. Also, in the sub-domain of the Korean-Mini Mental Status Examination performed to examine changes in cognitive ability, there were minimal changes in place orientation. In functional communication, however, there were no significant differences before and after the intervention. In conclusion, we found that ROT was an effective intervention for improving accuracy and responsiveness in the orientation of patients with mild cases of AD. In future studies, the effect of non-pharmacological interventions can be evaluated more reliably by examining the interaction effects of sample size, length of the intervention, outcome measurements, and pharmacological intervention.

The Optimized Design of a NPC Three-Level Inverter Forced-Air Cooling System Based on Dynamic Power-loss Calculations of the Maximum Power-Loss Range

  • Xu, Shi-Zhou;He, Feng-You
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1598-1611
    • /
    • 2016
  • In some special occasions with strict size requirements, such as mine hoists, improving the design accuracy of the forced-air cooling systems of NPC three-level inverters is a key technology for improving the power density and decreasing the volume. First, a fast power-loss calculation method was brought. Its calculation principle introduced in detail, and the computation formulas were deduced. Secondly, the average and dynamic power losses of a 1MW mine hoist acting as the research target were analyzed, and a forced-air cooling system model based on a series of theoretical analyses was designed with the average power loss as a heat source. The simulation analyses proves the accuracy and effectiveness of this cooling system during the unit lifting period. Finally, according to an analysis of the periodic working condition, the maximum power-loss range of a NPC three-level inverter under multi cycle operation was obtained and its dynamic power loss was taken into the optimized cooling system model as a heat source to solve the power device damage caused by instantaneous heat accumulation. The effectiveness and feasibility of the optimization design based on the dynamic power loss calculation of the maximum power-loss range was proved by simulation and experimental results.

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

Transformer-based transfer learning and multi-task learning for improving the performance of speech emotion recognition (음성감정인식 성능 향상을 위한 트랜스포머 기반 전이학습 및 다중작업학습)

  • Park, Sunchan;Kim, Hyung Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.515-522
    • /
    • 2021
  • It is hard to prepare sufficient training data for speech emotion recognition due to the difficulty of emotion labeling. In this paper, we apply transfer learning with large-scale training data for speech recognition on a transformer-based model to improve the performance of speech emotion recognition. In addition, we propose a method to utilize context information without decoding by multi-task learning with speech recognition. According to the speech emotion recognition experiments using the IEMOCAP dataset, our model achieves a weighted accuracy of 70.6 % and an unweighted accuracy of 71.6 %, which shows that the proposed method is effective in improving the performance of speech emotion recognition.

Transitive Similarity Evaluation Model for Improving Sparsity in Collaborative Filtering (협업필터링의 희박 행렬 문제를 위한 이행적 유사도 평가 모델)

  • Bae, Eun-Young;Yu, Seok-Jong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.109-114
    • /
    • 2018
  • Collaborative filtering has been widely utilized in recommender systems as typical algorithm for outstanding performance. Since it depends on item rating history structurally, The more sparse rating matrix is, the lower its recommendation accuracy is, and sometimes it is totally useless. Variety of hybrid approaches have tried to combine collaborative filtering and content-based method for improving the sparsity issue in rating matrix. In this study, a new method is suggested for the same purpose, but with different perspective, it deals with no-match situation in person-person similarity evaluation. This method is called the transitive similarity model because it is based on relation graph of people, and it compares recommendation accuracy by applying to Movielens open dataset.

Machine learning application in ischemic stroke diagnosis, management, and outcome prediction: a narrative review (허혈성 뇌졸중의 진단, 치료 및 예후 예측에 대한 기계 학습의 응용: 서술적 고찰)

  • Mi-Yeon Eun;Eun-Tae Jeon;Jin-Man Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.4
    • /
    • pp.141-157
    • /
    • 2023
  • Stroke is a leading cause of disability and death. The condition requires prompt diagnosis and treatment. The quality of care provided to patients with stroke can vary depending on the availability of medical resources, which in turn, can affect prognosis. Recently, there has been growing interest in using machine learning (ML) to support stroke diagnosis and treatment decisions based on large medical data sets. Current ML applications in stroke care can be divided into two categories: analysis of neuroimaging data and clinical information-based predictive models. Using ML to analyze neuroimaging data can increase the efficiency and accuracy of diagnoses. Commercial software that uses ML algorithms is already being used in the medical field. Additionally, the accuracy of predictive ML models is improving with the integration of radiomics and clinical data. is expected to be important for improving the quality of care for patients with stroke.

Improving Accuracy of Land Cover Classification in River Basins using Landsat-8 OLI Image, Vegetation Index, and Water Index (Landsat-8 OLI 영상과 식생 및 수분지수를 이용한 하천유역 토지피복분류 정확도 개선)

  • PARK, Ju-Sung;LEE, Won-Hee;JO, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.98-106
    • /
    • 2016
  • Remote sensing is an efficient technology for observing and monitoring the land surfaces inaccessible to humans. This research proposes a methodology for improving the accuracy of the land cover classification using the Landsat-8 operational land imager(OLI) image. The proposed methodology consists of the following steps. First, the normalized difference vegetation index(NDVI) and normalized difference water index(NDWI) images are generated from the given Landsat-8 OLI image. Then, a new image is generated by adding both NDVI and NDWI images to the original Landsat-8 OLI image using the layer-stacking method. Finally, the maximum likelihood classification(MLC), and support vector machine(SVM) methods are separately applied to the original Landsat-8 OLI image and new image to identify the five classes namely water, forest, cropland, bare soil, and artificial structure. The comparison of the results shows that the utilization of the layer-stacking method improves the accuracy of the land cover classification by 8% for the MLC method and by 1.6% for the SVM method. This research proposes a methodology for improving the accuracy of the land cover classification by using the layer-stacking method.