• 제목/요약/키워드: improvement of workability

검색결과 121건 처리시간 0.018초

고강도 강섬유 보강 시멘트 복합체의 워커빌리티 향상에 관한 연구 (A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites)

  • 고경택;강수태;박정준;류금성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.141-148
    • /
    • 2004
  • 본 논문에서는 고성능 감수제, 증점제, 광물질 혼화재 및 강섬유의 양과 종류가 고강도 섬유보강 시멘트 복합체의 워커빌리티에 미치는 영향을 실험적으로 검토하였다. 그 결과, 고강도 강섬유 보강 시멘트 복합체의 워커빌리티는 고성능 감수제, 증점제 및 광물질 혼화재를 적절히 사용함으로써 향상된다. 그리고 강섬유의 형상계수가 작을수록 섬유보강 시멘트 복합체의 워커빌리티가 향상되었으며, 또한 워커빌리티가 향상된 강섬유 보강 시멘트 복합체의 압축강도와 휨강도는 향상되는 것으로 나타났다.

Lignin 화합물의 Concrete 분산성에 대한 연구 (The Effect of Lignin Compound on Dispersibility of Concrete)

  • 문정연;한기성
    • 한국세라믹학회지
    • /
    • 제13권3호
    • /
    • pp.37-42
    • /
    • 1976
  • Although the water mixed into the concrete plays the role of hydration and acquiring the necessary workability, the more portion of water acts to obtain the substantial workability rather than to complete the hydration. However, the excess amount of water causes the poor quality of concrete, therefore it is useful to add the minimum amount of water as required as to acquire the proper workability. There have been the considerable numbers of investigations in which the dispersion phenomena of strong eletrolytic high polymer compounds such as lignosulfate and some of surface activation agents were studied to utilize as the dispersion agent of concrete. In the present study, Na-lignate, dispersion properties of which has not been studied yet, were investigated with the purpose of utilizing as a dispersion agent of concrete. The microscopic observations showed a great improvement in the dispersion of cement particles, also the fluidity and compressive strength of concrete were remarkably increased with the addition of Na-lignate: The addition of Na-lignate by 0.02% showed the increase of 1.76 times and 1.27 times of slump value and flow value respectively, and the compressive strength was increased by 1.07 times.

  • PDF

폐유리 분말을 이용한 모르타르의 특성 (Properties of Mortar Using Powdered Waste Glasses)

  • 배수호;임병탁
    • 한국농공학회지
    • /
    • 제45권3호
    • /
    • pp.50-58
    • /
    • 2003
  • Due to the economic growth and the improvement of life standards in the country, the quantities of waste glasses have been yearly increased. About 65% of them are recycled and the rest are reclaimed. The reclaimed waste glasses can cause some problems such as the environmental pollution as well as the processing cost of them. Thus, the purpose of this experimental research is to investigate the properties of mortar using powdered waste glasses(PWG) as a cementitious materials in mortar to recycle the reclaimed waste glasses For this purpose, the workability and strength of mortar specimens using PWG have been tested and analyzed in various grain size of them by changing the replacement ratio. As a result, considering the workability and strength of mortar specimens using PWG, it is concluded that the optimum grain size and replacement ratio of them will be existing.

원자력 발전소 RCB 외벽 거푸집 1단 타설 높이별 시공성 분석 (Analysis of Construction RCB Exterior Wall Formwork Placing High on Nuclear Power Plant)

  • 송효민;신윤석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.205-206
    • /
    • 2014
  • It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. The purpose of this study attempts to evaluate the single-stage workability of the system given a change in the height of the setting of RCB exterior wall formwork to be used in nuclear power plant construction. As a result of this study, it is possible height of 3.5m~4m uses formwork when analyzing the construction period and material costs an increase in formwork by concrete lateral pressure, to ensure the workability of the RCB exterior wall formwork. Through this study, I want to provide as basic data for the improvement of workability and RCB shortening the construction period.

  • PDF

플라이애시 및 실리카흄을 사용한 고강도유동화콘크리트의 공학적 특성에 관한 실험적 연구 (제1보, 아직 굳지않은 콘크리트의 시공성 검토) (An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part I. Workability of Fresh Concrete))

  • 김진만;이상수;김규용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 1994
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admixture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete, it is presented that using admixtures like flysh and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구 (A Study on the Improvement for Construction Performance of Fiber Reinforced Cementitious Composites)

  • 고경택;박정준;류금성;강수태;안기홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.393-396
    • /
    • 2006
  • This study present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the construction performance of fiber reinforced cementitious composites. As for the test results, it was found that the workability of fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of fiber improved the workability of fiber reinforced cementitious composites. And the fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

  • PDF

대단면 터널용 고성능 콘크리트 라이닝의 개발 (Development of High Performance Concrete Tunnel Linnig with Large Dimension)

  • 차훈;이창훈;손유신;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.53-56
    • /
    • 2005
  • High flowable concrete was first developed in 1988 to achieve durable concrete structures. High flowable concrete can improve workability sharply reason why the concrete has properties of resistance to segregation, filling ability, passing ability without compacting. Therefore, as we apply a high flowable concrete to a large dimensional tunnel which constructed in special environment, we can get workability, strength and durability required. Tunnel lining concrete with a large dimension has to use necessarily fly ash and slag for the properties of high flowability and watertight. We can expect improvement of workability and durability, mitigation of hydration, reducing shrinkage, enhancement of watertight by using cementitious materials. This paper proposes investigations for establishing a mix-design method and high flowability-strength testing methods have been carried out from the viewpoint of making a standard concrete tunnel lining with large dimension a standard.

  • PDF

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • 제15권6호
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

유동화 콘크리트의 시공성 향상 및 강도특성에 관한 기초적 연구(I) (제1보, 아직 굳지 않은 콘크리트의 유동화성상을 중심으로) (A Fundamental Study on the Workability Improvement and Strength Properties of Superplasticized Concrete(I) (Part 1, In the Case of Fluidity Performance and Properties of Fresh Concrete))

  • 김무한;권영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.15-20
    • /
    • 1989
  • The effect of superplasticizing agents on the sorkability performance in fresh concrete have been analyzed and investigated under various mix proportions of water cement ratio of 0.40, 0.50, 0.60 and 0.70, superplasticizing agents of NL-4000 and Rheobuild-716, and addition rate of sp. agents of 0.0, 0.5, 1.0, 1.5 and 2.0 in the practical range. It is the aim of this study to provide the fundamental data on the fluidity performance and workability improvement of superplasticized concrete such as time-dependent change of slump, flow value and compacting factor, air content, bleeding, mixing temperature and setting rate of fresh concrete comparing with base concrete and conventional concrete for the practical use and research data accumulation of superplasticized concrete in the side of development of concrete construction technology and management.

  • PDF