• Title/Summary/Keyword: improvement of durability

Search Result 592, Processing Time 0.032 seconds

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Mechanical and durability properties of fluoropolymer modified cement mortar

  • Bansal, Prem Pal;Sidhu, Ramandeep
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.317-327
    • /
    • 2017
  • The addition of different types of polymers such as SBR, VAE, Acrylic, etc. in concrete and mortar leads to an increase in compressive, tensile and bond strength and decrease in permeability of polymer modified mortar (PMM) and concrete (PMC). The improvement in properties such as bond strength and impermeability makes PMM/PMC suitable for use as repair/retrofitting and water proofing material. In the present study effect of addition of fluoropolymer on the strength and permeability properties of mortar has been studied. In the cement mortar different percentages viz. 10, 20 and 30 percent of fluoropolymer by weight of cement was added. It has been observed that on addition of fluoropolymer in mortar the workability of mortar increases. In the present study all specimens were cast keeping the workability constant, i.e., flow value $105{\pm}5mm$, by changing the amount of water content in the mortar suitably. The specimens were cured for two different curing conditions. Firstly, these were cured wet for one day and then cured dry for 27 days. Secondly, specimens were cured wet for 7 days and then cured dry for 21 days. It has been observed that compressive strength and split tensile strength of specimens cured wet for 7 days and then cured dry for 21 days is 7-13 percent and 12-15 percent, respectively, higher than specimens cured one day dry and 27 days wet. The sorptivity of fluoropolymer modified mortar decreases by 88.56% and 91% for curing condtion one and two, respectively. However, It has been observed that on addition of 10 percent fluoropolymer both compressive and tensile strength decreases, but with the increase in percentage addition from 10 to 20 and 30 percent both the strengths starts increasing and becomes equal to that of the control specimen at 30 percent for both the curing conditions. It is further observed that percentage decrease in strength for second curing condition is relatively less as compared to the first curing condition. However, for both the curing conditions chloride ion permeability of polymer modified mortar becomes very low.

Applications and Prospects of Calcium Carbonate Forming Bacteria in Construction Materials (건축공학분야에서 탄산칼슘형성세균의 응용과 전망)

  • Park, Sung-Jin;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • Microbiological calcium carbonate precipitation (MCCP) is being applied for the aesthetic restoration of cement buildings destroyed by biochemical processes and to block water penetration into the cement's inner structure. After determining the advantages of this technique, many related studies in the area of architecture concerning the application of microorganisms to improve construction material have been reported in both America and Europe. The techniques compatibility with cement material is especially interesting because of the needed screening of various calcium carbonate forming-bacteria and the required development of their application methods. The purpose of this review is to describe the mechanism of MCCP and related researches with eco-friendly construction materials. Mainly, we describe the methodological studies focused on biodeposition on the surface of building materials and the research trends concerning the addition of microorganisms to improve the durability of cement structures. Additionally, the concepts and technical aspects focused on the development of self-healing smart concrete, with the use of multi-functional bacteria, have been considered.

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

Compressive Behavior of Reinforced Nylon Fiber Slag-CB (나일론 섬유 보강 Slag-CB의 압축거동 특성)

  • Younkyoung Lee;Taeyeon Kim;Jongkyu Lee;Youngsoo Joo;Bongjik Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.5-10
    • /
    • 2023
  • Slag-CB is widely used in various fields that require groundwater control. It is a type of CB where a portion of the cement mixed with CB is replaced with GGBS. In general, Slag-CB has the advantage of long-term improvement in compressive strength, permeability, durability, and chemical resistance as the GGBS replacement ratio increases. However, there are problems such as decreased flexibility and resistance to deformation of the cut-off walls, as well as brittleness upon failure. To address these problems, some quality standards recommend designing Slag-CB with lower strength, which makes it challenging to apply high-strength Slag-CB with a high GGBS replacement ratio in the field.In this study, we aimed to improve the flexibility and resistance to deformation of Slag-CB to prevent brittle failure and improve the field applicability of Slag-CB. To achieve this, we evaluated the compressive behavior of nylon fiber-reinforced Slag-CB and proposed measures for enhancing the flexibility and resistance to deformation of Slag-CB.

Development and Animal Tests of Artificial Heart Valves (인공심장판막의 개발 및 동물실)

  • 이재영
    • Journal of Chest Surgery
    • /
    • v.20 no.3
    • /
    • pp.458-472
    • /
    • 1987
  • A heart supplies bloods of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to this act of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of bloods. In an attempt to eliminate the affliction of heart valves, the operation method to repair with artificial heart valves has been developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. The artificial heart valve using pyrolytic carbon has been developed at KAIST, which was proved to be stable in the mechanical performance and durability. Therefore, the in viva performance of this valve was examined through animal tests. The artificial heart valves used in this study are tilting disc type valves, in which the disc were made of graphite coated with pyrolytic carbon and the cages were made of titanium. In viva testings of these valves were performed in 12 dogs, in which right ventriculo-pulmonary arterial [Croup I] or inter-aortic [Croup IV] valved conduit was implanted using polytetrafluoroethylene conduits containing KAIST valve and aortic valve [Group II] or pulmonary valve [Croup III] was replaced by a KAIST valve with a 21mm or 19mm tissue annulus diameter. In group I and II, pre-and post-operative transvalvular pressure gradient was measured and compared with other prosthetic valves. During post operative period laboratory examination was performed including hemoglobin, hematocrit, red cell count, white cell, lactic acid dehydrogenase and platelet. The eight surviving dogs were sacrificed and autopsy was performed at 2, 6, and 8 weeks. KAIST valve has low transvalvular gradient and relatively high orifice area. Average ventriculo-aortic peak systolic transvalvular gradient was 14 mmHg in 21 mm valve and 19 mmHg in 19 mm valve. The valve has slight intravascular hemolysis effect. Thrombogenic effect of low polishing quality and eddy currents around small orifice is high. The valve has vulnerability of disc movement. These animal tests suggest that the improvement of the heart valve design, surface polishing state and prescription methods.

  • PDF

A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module (고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구)

  • Kim, Hyun-Uk;Kim, Jeong-Ho;Ohmori, Hitoshi;Kwak, Tae-Soo;Jeong, Shang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

Dynamic and Durability Properties of the Low-carbon Concrete using the High Volume Slag (High Volume Slag를 사용한 저탄소 콘크리트의 역학 및 내구특성)

  • Moon, Ji-Hwan;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.351-359
    • /
    • 2013
  • Blast furnace slag (BFS) have many advantages that are related to effective value improvement on applying to concrete while side effects of blast furnace slag also appear. Thus, research team conducted an experiment with high volume slag to see if the attribute of waste alkali accelerator for mixing rate, mixed use of NaOH and $Na_2SiO_3$, and early strength agent for mixing rate for replacement ratio and for the types of the stimulants in order to increase the use of blast furnace slag1s powder. As the result of the experiment, when it comes to compression strength, all of the alkali stimulants have been improved as the replacement rate increases except for sodium hydroxide. Among the alkali stimulants, sodium silicate was high on dynamic elastic modulus and absorption factor. In case of early strength agent, the mix of mixing 1.5% and blast furnace slag 75% have showed high strength enhancement. In event of Waste Alkali accelerator, it has showed different consequences for each experiment.

Tribological Performance of Ni-Cr Composite Coating Sprayed onto AISI 4340 (SNCM439) Steel by High Velocity Oxygen Fuel

  • Umarov, Rakhmatjon;Pyun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.217-225
    • /
    • 2018
  • In this study, we spray a Ni-Cr composite powder onto AISI 4340 steel using the high velocity oxygen fuel method. We subsequently subject the Ni-Cr coating (as-sprayed) to ultrasonic nanocrystal surface modification (UNSM) process to improve the tribological performance. This study aims at increasing the wear resistance and durability of the Ni-Cr coating by altering the surface integrity and microstructure via the UNSM process. The UNSM process reduces the surface roughness of the as-sprayed coating by about 64%, which is explained by observing the elimination of high peaks and valleys and filling up micro-pores. Furthermore, a change in the microstructure of the coating due to continuous high-frequency strikes to the surface by a tip can lead to an increase in hardness from about 48 to 60 HRC. Furthermore, we investigate the characterization of the friction and wear behavior of Ni-Cr coating by a ball-on-disc tribometer in the dry conditions. We determine that after the UNSM process, there is a significant reduction in the friction coefficient of the as-sprayed coating from approximately 1.1 to 0.75. This is owing to the increased hardness and smoothed surface roughness. In addition, we investigate the surface morphology and wear track of the coatings before and after the UNSM process using a scanning electron microscope, energy dispersive spectrometer, and three-dimensional laser scanning microscope. We observe that the wear track of the Ni-Cr coating after the UNSM process is lower than that of the as-sprayed one. Thus, we confirm that the UNSM process has a significant influence on the improvement of the tribological performance of the Ni-Cr composite coating.

The Study of the Design and Control for the Hydrogen Recirculation Blower Noise and Vibration Reduction (수소 재순환 블로어 소음 진동 저감을 위한 설계 및 제어에 관한 연구)

  • Bae, Ho June;Ban, Hyeon Seok;Noh, Yong Gyu;Jang, Seok Yeong;Lee, Hyun Joon;Kim, Chi Myung;Park, Yong Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.509-515
    • /
    • 2014
  • At the fuel processing system (FPS) of fuel cell vehicle, hydrogen recirculation blower (HRB) is used for the recirculation of remained hydrogen after reaction. In this paper, noise and vibration improvement of HRB is studied by changing design and control. It is checked the campbell diagram and critical speed for stability of rotor, and housing stiffness is improved using simulation of frequency response function (FRF). A method is suggested that can decrease the unbalance amount of the rotor and impeller which main source of noise and vibration. In order to reduce the noise during deceleration of blower, electrical braking is applied and tested the risk impact of durability. Founded the optimum switching frequency of the motor control, and reduced the idle rpm by increasing of aerodynamic performance. The superiority of paper is proved by measurement of the improved product's noise and vibration.