• Title/Summary/Keyword: improved linear array

Search Result 49, Processing Time 0.025 seconds

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.

Improvement of Zinc Coating Weight Control for Transition of Target Change

  • Chen, Chien-Ming;Lin, Jeng-Hwa;Hsu, Tse-Wei;Lin, Rui-Rong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.105-108
    • /
    • 2010
  • The product specification of the Continuous Hot Dip Galvanizing Line (CGL) changes and varies constantly with different customers' requirements, especially in the zinc coating weight which is from 30 to 150 g/$m^2$ on each side. Since the coating weight of zinc changes often, it is very important to reduce time spent in the transfer of target values changed for low production cost and yield loss. The No.2 CGL in China Steel Corporation (CSC) has improved the control of the air knife which is designed by Siemens VAI. CSC proposed an experiment design which is an $L_9(3^4)$ orthogonal array to find the relations between zinc coating weight and the process parameters, such as the line speed, air pressure, gap of air knife and air knife position. A non-linear regression formula was derived from the experimental results and applied in the mathematical model. A new air knife feedforward control system, which is coupled with the regression formula, the air knife control system and the process computer, is implemented into the line. The practical plant operation results have been presented to show the transfer time is obviously shortened while zinc coating weight target changing and the product rejected ratio caused by zinc coating weight out of specification is significantly reduced from 0.5% to 0.15 %.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

Performance Analysis of TPMS Beamformer According to Variance of Antenna Interelement Spacing (안테나 간격 변화에 대한 TPMS 빔형성기 성능분석)

  • Choi, Byung-Sang;Kim, Seong-Min;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.907-915
    • /
    • 2013
  • Tire Pressure Monitoring System (TPMS) is an auxiliary safety system for recognizing the condition of tires based on the pressure and temperature data transmitted from the sensor unit installed on a tire of the vehicle. Using TPMS, a driver can frequently check the state of tires and it aids to maintain the optimum running condition of the vehicle. Since TPMS must utilize the wireless communication technique to transmit data from a sensor unit to a signal processing unit installed in the vehicle, it suffers from interference signals caused by various external electrical or electronic devices. In order to suppress high-power interference signals, we employ beamforming techniques based on the uniform linear antenna array. As the number of the antennas is increased, the performance of the interference suppression is improved. However, there is the limit of the number of antennas, installed in the center of a vehicle, because of its size. In this paper, we compare and analyze the performance of the beamformer, when reducing the interelement spacing of antennas, to increase the number of the receiving antennas. For the performance analysis of the beamformers, we consider the switching beamformer and minimum-variance distortionless-response (MVDR) beamformer for TPMS, recently proposed.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Effects of Dietary Lycopene Supplementation on Antioxidtion in Broiler and Layer (Lycopene의 사료 내 첨가가 육계와 산란계의 항산화에 미치는 영향)

  • Ju, Won-Don;An, Byeong-Gi;Gang, Chang-Won
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.17-30
    • /
    • 2005
  • Lycopene is the red-coloured carotenoid predominantly found in tomato fruit and one of the major carotenoids in the diets of North American and Europeans. Interest in lycopene is growing rapidly following the recent publication of its effects as a natural antioxidant and prevention of cardiovascular disease and cancers. Lycopene, a polyene hydrocarbon carotenoid haying 13 double bond, of which 11 are conjugated double bonds in a linear array exhibits a strong antioxidant property almost twice as strong as that of ${\beta}$-carotene. Lycopene has been shown in recent epidemiological and experimental studies to protect against oxidative damage of DNA which plays an important part in development of various cancer. Lycopene also contribute towards reducing the risk of cardiovascular diseases by preventing oxidation of low-density lipoprotein(LDL) cholesterol. This review summarize our knowledge and the current understanding of lycopene in human health as well as the results of experiments we conducted. We conducted experiments for investigating the effects of antioxidant in broiler and the possibilities of production of high quality eggs containing lycopene by the dietary lycopene supplementation with synthetic lycopene or tomato paste. The results shows that thiobarbituric acid reaction substances(TBARS) values in process of LDL oxidation in blood serum of broiler were significantly decreased by dietary lycopene and tomato paste. The dietary lycopene supplementation resulted in improved egg yolk color and in decreased the malondialdehyde (MDA) of egg yolk after 4 wk of storage at room temperature significantly(P<0.05). The dietary tomato paste was more effective in the MDA reduction compared to the lycopene(P<0.05). The contents of lycopene in egg yolk of the lycopene supplementation groups were significantly higher than those of the control group.

  • PDF

A NEW ADAPTIVE BEAM-FORMING ALGORITHM BASED ON GENERALIZED ON-OFF METHOD FOR SMART ANTENNA SYSTEM (스마트 안테나 시스템을 위한 일반화된 ON-OFF방식의 새로운 적응 빔형성 알고리즘)

  • 이정자;안성수;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.984-994
    • /
    • 2003
  • This paper proposes a novel blind adaptive algorithm for computing the weight vector of an antenna array system. The new technique utilizes a Generalized On-Off algorithm to obtain the weight vector maximizing the SINR(Signal to Interference plus Noise Ratio) of the received signal. It is observed that the proposed algorithm generates a suboptimal weight vector with a linear computational load(O(6N+8)). From the various simulations, it is confirmed that, when the signal environment becomes adverse, e.g., low Processing Gain, and/or wide angular spread. the proposed algorithm outperforms the conventional one in terms of the communication capacity by about 3 times. Applying the proposed algorithm to satellite tracking systems as well as IS2000 1X mobile communication system, we have found that both communication capacity and communication quality are significantly improved.

Coherent Multiple Target Angle-Tracking Algorithm (코히어런트 다중 표적 방위 추적 알고리즘)

  • Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon;Hwang Soo-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.230-237
    • /
    • 2005
  • The angle-tracking of maneuvering targets is required to the state estimation and classification of targets in underwater acoustic systems. The Problem of angle-tracking multiple closed and crossing targets has been studied by various authors. Sword et al. Proposed a multiple target an91e-tracking algorithm using angular innovations of the targets during a sampling Period are estimated in the least square sense using the most recent estimate of the sensor output covariance matrix. This algorithm has attractive features of simple structure and avoidance of data association problem. Ryu et al. recently Proposed an effective multiple target angle-tracking algorithm which can obtain the angular innovations of the targets from a signal subspace instead of the sensor output covariance matrix. Hwang et al. improved the computational performance of a multiple target angle-tracking algorithm based on the fact that the steering vector and the noise subspace are orthogonal. These algorithms. however. are ineffective when a subset of the incident sources are coherent. In this Paper, we proposed a new multiple target angle-tracking algorithm for coherent and incoherent sources. The proposed algorithm uses the relationship between source steering vectors and the signal eigenvectors which are multiplied noise covariance matrix. The computer simulation results demonstrate the improved Performance of the Proposed algorithm.

L-band SAR-derived Sea Surface Wind Retrieval off the East Coast of Korea and Error Characteristics (L밴드 인공위성 SAR를 이용한 동해 연안 해상풍 산출 및 오차 특성)

  • Kim, Tae-Sung;Park, Kyung-Ae;Choi, Won-Moon;Hong, Sungwook;Choi, Byoung-Cheol;Shin, Inchul;Kim, Kyung-Ryul
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.477-487
    • /
    • 2012
  • Sea surface winds in the sea off the east coast of Korea were derived from L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data and their characteristics of errors were analyzed. We could retrieve high-resolution wind vectors off the east coast of Korea including the coastal region, which has been substantially unavailable from satellite scatterometers. Retrieved SAR-wind speeds showed a good agreement with in-situ buoy measurement by showing relatively small an root-mean-square (RMS) error of 0.67 m/s. Comparisons of the wind vectors from SAR and scatterometer presented RMS errors of 2.16 m/s and $19.24^{\circ}$, 3.62 m/s and $28.02^{\circ}$ for L-band GMF (Geophysical Model Function) algorithm 2009 and 2007, respectively, which tended to be somewhat higher than the expected limit of satellite scatterometer winds errors. L-band SAR-derived wind field exhibited the characteristic dependence on wind direction and incidence angle. The previous version (L-band GMF 2007) revealed large errors at small incidence angles of less than $21^{\circ}$. By contrast, the L-band GMF 2009, which improved the effect of incidence angle on the model function by considering a quadratic function instead of a linear relationship, greatly enhanced the quality of wind speed from 6.80 m/s to 1.14 m/s at small incident angles. This study addressed that the causes of wind retrieval errors should be intensively studied for diverse applications of L-band SAR-derived winds, especially in terms of the effects of wind direction and incidence angle, and other potential error sources.