• Title/Summary/Keyword: implicit contraction

Search Result 12, Processing Time 0.015 seconds

Hierarchical Simulation for Real-time Cloth Animation and LOD control (실시간 옷감 애니메이션과 LOD 제어를 위한 계층적 시뮬레이션)

  • Kang, Young-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.479-485
    • /
    • 2007
  • In this paper, a hierarchical simulation with an approximate implicit method is proposed in order to efficiently and plausibly animate mass-spring based cloth models. The proposed hierarchical simulation method can generate realistic motion of extremely fine mesh in interactive rate. The proposed technique employs a fast and stable simulation method which approximates the implicit integration. Although the approximate method is efficient, it is extremely inaccurate and shows excessively damped behavior. The hierarchical simulation technique proposed in this paper constructs multi-level mesh structure in order to represent the realistic appearance of cloth model and performs simulation on each level of the mesh with constraints that enforce some of the mass-points of current level to follow the movement of the previous level. This hierarchical method efficiently generates a plausible movement of a cloth model composed of large number of mass points. Moreover, this hierarchical method enables us to generate realistic wrinkles on the cloth, and the wrinkle pattern on the cloth model can be easily controlled because we can specify different contraction resistance force of springs according to their hierarchical level.

Numerical study on the characteristics of the flow through injector orifice by multi-block computations (다중블럭계산에 의한 분사기 오리피스 유동특성 해석)

  • Kim, Yeong-Mok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.414-426
    • /
    • 1997
  • Numerical computations were conducted to characterize the three-dimensional laminar flow through an injector orifice having an inclined angle of 30 .deg.. For this study, the incompressible Navier-Stokes equations in generalized curvilinear coordinates, using a pseudocompressibility approach for continuity equation, were solved. The computations were performed using the finite difference implicit, approximately factored scheme of Beam and Warming and multi-block grids of complete continuity at block interfaces. The multi-block computations were validated for the steady state using direct comparison of multi-block solutions with equivalent single-block ones, including 2-D 180.deg. TAD and 3-D 90.deg. pipe bend. The comparisons between the numerical solutions and the flow field measurements for a tube with sudden contraction were presented in this work for solution validation. Computational results showed the nature of complex flow fields within the inclined injector orifice, including strong pressure-driven secondary flows in the cross stream induced by the effect of streamline curvature. In addition, asymmetric secondary flows were induced in the Reynolds number range above assumed laminar flow regime considered. However, turbulence calculations and grid dependency studies are needed for more accurate computations.