• 제목/요약/키워드: implant structure

검색결과 256건 처리시간 0.03초

Restoration of IARPD in partially edentulous patients with bone defects due to osteomyelitis treatment (골수염 치료로 인해 골결함이 있는 부분무치악 환자에서 IARPD 수복)

  • Park, Se-Hyun;Sung, Han-Gyul;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제59권3호
    • /
    • pp.359-369
    • /
    • 2021
  • Implant prostheses and removable partial dentures are mainly used as treatment methods for partial edentulous patients who have lost a number of teeth. The implant-assisted removable partial denture (IARPD) is strategically selected. The defect in maxillofacial structure due to osteomyelitis, a type of facial bone infection, causes dysfunction such as mastication, swallowing, and pronunciation, as well as social and psychological effects, so a removable restoration is required to restore the supporting tissue. Design of abutment and partial dentures is an essential factor in the success of treatment. In this case, IARPD, which has superior retention and stability compared to traditional removable partial dentures, can have a good prognosis. In a partial edentulous patient with bone defects due to osteomyelitis treatment, the stability of the denture was secured with IARPD restoration. Moreover, maintenance problem that may occur in the future was minimized by providing an appropriate denture design and occlusal scheme through several provisional restorations. This case can be expected to have a favorable prognosis in the long term.

Effect of Al2O3 on the Structure and Properties of Bioglass (생체 유리의 구조 및 물성에 미치는 Al2O3의 영향)

  • 노종남;황진명;김철영
    • Journal of the Korean Ceramic Society
    • /
    • 제26권6호
    • /
    • pp.811-819
    • /
    • 1989
  • There have been many studies on the biological phenomena of Bioglasses, which nay be used as implant materials in human body. However, not many works on the Bioglass compositions have been reported. In the present study, the effect of Al2O3 substitution for SiO2 in Bioglass of Na2O-CaO-P2O5-SiO2 system on its structure and properties was examined. Infrared and Raman spectroscopic studies for the glass structural analysis, differential thermal analysis and X-ray diffraction analysis for crystallization of the glass were perfomed. Several physical properties, such as thermal expansion coefficient, softening point, microhardness and reaction phenomena, were also measured. The major crystalline phase, after heat treatment of the glasses, was Na2Ca2(SiO2)3 and the crystal was transformed into other phase with increased substitution of Al2O3. The added Al2O3 reduced non-bridging oxygen in glass structure and thermal expansion coefficient, but increased glass density, sofening point and microhardness. When the glasses are reacted in Tris-buffer solution, the substituted Al2O3 inhibited the formation of hydroxyapatite on the Bioglas surface, and no hydroxyapatite was formed for the sample which contained more than 6wt.% of Al2O3 even if they were reacted for 600 hours.

  • PDF

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • 제10권1호
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

A study of hydroxyapatite coating on Ti-6Al-4V dental implant alloy with different surface treatments using a sol-gel derived precursor (Sol-Gel 성형체에 의해 다르게 표면 처리된 치과 Implant용 Ti-6Al-4V합금의 Hydroxyapatite 코팅에 관한 연구)

  • Han, Sok-Yoon
    • Journal of Technologic Dentistry
    • /
    • 제26권1호
    • /
    • pp.139-144
    • /
    • 2004
  • In the present study, a simple method was successfully used for hydroxyapatite coatings on Ti-6Al-4V substrates deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating the samples were micropolished (0.1 micron) and divided into three sets. The first set,were the micropolished samples kept as such. The second set were coated with titania sol and the third set was treated with 5M NaOH. After three repetitions of hydroxyapatite coating procedures on each set and heat treatment at 600 $^{\circ}\Delta C$, the formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The SEM studies revealed surface morphology. Hydroxyapatite, calcined at 600$^{\circ}\Delta C$, displaying a porous structure arisen from heating of the bulk. But, it is very meaningful in trying to approach morale management plans with an object of dental technicians. It is necessary that dental technicians should make efforts to control themselves.

  • PDF

Design of lattice structure for controlling elastic modulus in metal additive manufacturing (금속 적층제조에서의 격자구조 설계변수에 따른 탄성계수 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제33권6호
    • /
    • pp.276-281
    • /
    • 2023
  • With the high design freedom of the additive manufacturing process, there is a growing interest in multi-dimensional lattice structures among researchers, who are studying intricate structural modeling that is challenging to produce using conventional manufacturing processes. In the case of titanium alloy implants for human insertion, a multi-dimensional lattice structure is employed to ensure compatibility with bones, adjusting strength and elastic modulus to levels similar to those of bones. Therefore, securing a database on the mechanical properties based on lattice structure design variables and the development of related simulation techniques are believed to efficiently facilitate the customization of implants. In this study, lattice structures were additively manufactured using Ti-6Al-4V alloy, and the elastic modulus was measured based on design parameters. The results were compared with simulations, and an approach to finite element analysis for accurate prediction of the elastic modulus was proposed.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.

A Preview of the Valid Natural Tooth Implantation(NTI) Related with Periodontal Diseases

  • Chang, Sang-Kohn
    • Proceedings of the KACD Conference
    • /
    • 대한치과보존학회 2002년도 추계학술대회
    • /
    • pp.721-721
    • /
    • 2002
  • For about half a century. dental implants made of titanium have developed as a method of restoration for the tooth loss. In these days. the titanium implants seem to be considered as the alternative for the conventional prosthodontics. But its hard to say that the titanium implants are superior to the treatments that preserve the natural tooth. As this is a general opinion among dentists. the implant will not be able to be the alternative for all the prosthetic treatments. Clinically, there are many causes for extracting tooth. The severe destruction of the tooth structure or periodontal diseases leads to inevitable tooth extraction. When the complete cure is doubtful because of narrow intraoral visibility and improper accessibility in approaching to the tooth and periodontal lesion, we. clinicians often inevitably extract tooth. Passive treatments like conventional restoration, curettage or surgical flap cant be the perfect treatments for the tooth that has subgingival root caries or severe periodontal diseases involved furcation. Many clinicians might have been forced to pull out the relatively healthy tooth by the difficulties of approaching to the lesions and poor prognosis. Though the intentional tooth replantation is performed sometimes. as it doesnt have enough scientific foundation. it has not been considered as a popular treatment method yet. I have been felt keenly the necessity of positive tooth preservation, so I have been attempting the treatment that has new concept. calling Natural Tooth Implantation (NTI) clinically. NTI differs from the tooth replantation in the goal for the treatment and biological healing process. Now. I confirm that NT! is a very positive and valid method of tooth preservation. Like you can get from the name. NTI is the dental implant procedure using natural teeth and similar to the healing process of the titanium implants in many aspects. I have been using biocompatible composite resin. DRM. with NTI and got affirmative clinical results from that. So I would like to introduce.roduce.

  • PDF

Biomechanical Testing of Anterior Cervical Spine Implants: Evaluation of Changes in Strength Characteristics and Metal Fatigue Resulting from Minimal Bending and Cyclic Loading

  • Kim, Sung-Bum;Bak, Koang-Hum;Cheong, Jin-Hwan;Kim, Jae-Min;Kim, Choong-Hyun;Oh, Seong-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제37권3호
    • /
    • pp.217-222
    • /
    • 2005
  • Objective: To achieve optimal fit of implant, it is necessary to bend the implant during spine surgery. Bending procedure may decrease stiffness of plate especially made of titanium and stainless steel. Typically titanium suffers adverse effects including early crack propagation when it is bent. We investigate whether 6 degree bending of titanium plates would decrease the stiffness after full cyclic loading by comparing with non-bending titanium plates group. Methods: Authors experimented 40 titanium alloy plates of 57mm in length, manufactured by 5 different companies. Total 40 plates were divided into two groups (20 bent plates for experimental group and 20 non-bent plates for control group). Twenty plates of experimental group were bent to 6 degree with 3-point bending technique and verified with image analyzer. Using the electron microscope, we sought for a initial crack before and after 3-point bending. Mechanical testing by means of 6000 cyclic axial-compression loading of 35N in compression with moment arm of 35mm-1.1 Nm was conducted on each plate and followed by the electron microscopic examination to detect crack or fissure on plates. Results: The stiffness was decreased after 6000 cyclic loading, but there was no statistically significant difference in stiffness between experimental and control group. There was no evidence of change in grain structure on the electron microscopic magnification. Conclusion: The titanium cervical plates can be bent to 6 degree without any crack or weakness of plate. We also assume that minimal bending may increase the resistance to fatigue fracture in cervical flexion-extension movement.

A Study of mechanical properties of oxide layer removed Co-Cr-Mo abutments

  • Ryu, Jae-ho;Huh, Jung-Bo;Ro, Jung-Hoon;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of the Korean dental association
    • /
    • 제53권11호
    • /
    • pp.804-816
    • /
    • 2015
  • PURPOSE: The aim of this study was to evaluate the influence of the oxide layer removal process in the Co-Cr-Mo (CCM) abutment after casting procedure on the prosthesis settlement and screw stability. MATERIALS AND METHODS: CCM abutments of four different interface conditions (CCM-M; machined, CCM-O; oxide layer formed, CCM-B; blasted, CCM-P; polished after blasted) and gold abutment (Gold-C; Cast with type III Gold alloy) were used. The initial settling values of abutments were evaluated according to the difference of implant-abutment length when the tightening torques were applied at 5 Ncm and 30 Ncm, and the settling values of abutments caused by loading were evaluated according to the difference of implant-abutment length before and after loading with 250 N, 100000 cycle. The loss ratios of removal torque for abutment screws were evaluated according to the difference in value of removal torques under 30 Ncm tightening torque applied before and after cyclic loading. RESULTS: The CCM-P and CCM-B group showed a higher initial settling value compared with the Gold-C group (P<.05), while the Gold-C group showed the highest settling values caused by loading (P<.05) and no significant differences were observed for between CCM groups (P>.05). The loss ratio of removal torque values for the CCM-B, CCM-P groups did not differ significantly from that of the Gold-C group (P>.05). CONCLUSION: Even though the oxide layer was removed by different methods, CCM abutment with internal conical connection structure showed lower abutment settling and similar screw loosening after cyclic loading compared with gold abutment.

Electrochemical Behavior of Plasma Electrolytic Oxidized Films Formed in Solution Containing Mn, Mg and Si Ions

  • Lim, Sang-Gyu;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.80-80
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electro-chemical oxidation is a novel method to form ceramic coatings on light metals such as tita-nium and its alloys. This is an excellent re-producibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magne-sium (Mg) have a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth, and development. Mn influences regulation of bone remodeling be-cause its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Pre-studies have shown that Mg plays very im-portant roles in essential for normal growth and metabolism of skeletal tissue in verte-brates and can be detected as minor constitu-ents in teeth and bone. In this study, Electrochemical behavior of plasma electrolytic oxidized films formed in solution containing Mn, Mg and Si ions were researched using various experimental in-struments. A series of Si-Mn-Mg coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 5 and 10%. The potentiodynamic polarization and AC impedance tests for corrosion behav-iors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV. Also, AC impedance was performed at frequencies anging from 10MHz to 100kHz for corrosion resistance.

  • PDF