• Title/Summary/Keyword: implant materials

Search Result 1,305, Processing Time 0.026 seconds

The combination effects of PDGF and IGF-I on the proliferation and cellular activity of periodontal ligament cells (PDGF와 IGF-I 병용 사용시 치주인대세포의 증식과 세포활성에 미치는 영향에 관한 연구)

  • Suh, Jo-Young;Shin, Hong-In;Kyung, Hee-Moon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.396-413
    • /
    • 1996
  • Current acceptable methods for promoting periodontal regeneration are based on removal of diseased soft tissue. root treatment, guided tissue regeneration, introduction of new graft materials and biological mediators. Insulin-like growth factor-I(IGF-I) and Platelet-derived growth factor-BB(PDGF-BB), the members of the polypeptuyde growth factor family have been reported as the biological mediators which regulate a variety cellular matrix biologic activities of wound healing process including the cell proliferation, migration and extracellular matrix synthesis.The purposes of this study is to evaluate the combination effects of IGF-I and PDGF-BB on the cellular activity of the periodontal ligament cells to act as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the first premolar tooth extracted for the orthodontic treatment and were cultured in DMEM containing 10% FBS at the $37^{\circ}C$, 5% CO2 incubator. Author measured the DNA synthetic activity, and total protein, collagen and noncollagenous protein synthetic activities according to the concentration of 10,100ng/ml IGF-I and1,10 ng/ml PDGF-BB in combination. The results were as follows: Significantly increased in the 1 ng/ml PDGF-BB alone compared to the 10 ng/ml PDGF-BB alone(P<0.01) and in the 1 ng/ml PDGF-BB and 10, 100ng/ml IGF-I in combination compared to the 1 ng/ml PDGF-BB alone(P<0.05, P<0.0l). The synthetic activity of the total protein and collagen is significantly increased like to the synthetic activity of the DNA(P<0.05). The synthetic activity of the noncollagenous protein is increased according to the concentration of IGF_I, but not statistically statistically significant(P>0.05). The percent of the collagen is significantly in the 1ng/ml PDGF-BB and 10ng/ml IGF-I in combination compared to the 1ng/ml PDGF-BB alone(P<0.05) and in the 10ng/ml IGF-I in combination compared to the 10ng/ml PDGF-BB alone(P<0.05). The synthetic activity of the DNA is In conclusions, the percent study shows that PDGF-BB and IGF-I in combination have a potentiality to enhance the DNA synthesis and the total protein and collagen synthesis of The periodontal ligament cells, especially it is more significant in the low concentration of PDGF-BB compared to the high one. Thus, the PDGF-BB and IGF-I in combination may have important roles in promotion of periodontal litgment healing, and consequently, may useful for clinical application in periodontal regenerative procedures.

  • PDF

Role of the periosteum on bone regeneration in rabbit calvarial defects (가토의 두개골 결손부에서 골재생에 끼치는 골막의 역할)

  • Jang, Hyun-Seon;Kim, Sang-Mok;Park, Joo-Cheol;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.939-948
    • /
    • 2005
  • The role of the periosteum on osteointegration of $Bio-Oss^{(R)}$(Geistlich, Wolhusen/Switzerland) was studied in rabbit calvarial defect. 12 New Zealand white male rabbits between 2.8 and 4 kg were included in this randomized, blinded, prospective study. Each rabbit was anesthetized with Ketamine HCl(5 mg/kg) and Xylazine HCl(1.5 ml/kg). An incision was made to the bony cranium and the periosteum was reflected. Using a 6-mm trephine bur(3i. USA), four 8-mm defects were created with copious irrigation. The defects were classified into barrier membrane($Tefgen^{(R)}$, Lifecore Biomedical. Inc, U.S.A.) only group as a control, $Bio-Oss^{(R)}$ with barrier membrane group, $Bio-Oss^{(R)}$ with periosteum covering group, and $Bio-Oss^{(R)}$ without periosteum covering group. There were 2 rabbits in each group. The wound was closed with resorbable suture materials. Rabbits were sacrificed using phentobarbital(100 mg/kg) intravenously at 1, 2, and 4 weeks after surgery. The samples were fixed in 4% paraformaldehyde, and decalcified in hydrochloric acid decalcifying solution(Fisher Scientific, Tustin, CA) at $4^{\circ}C$ for 2-4 weeks. It was embedded in paraffin and cut into 6 ${\mu}m$ thickness. The sections were stained with H & E and observed by optical microscope. The results were as follows; 1. The periosteum played an important role in osteointegration of $Bio-Oss^{(R)}$ in bone defects. 2. When the periosteum remained intact and $Bio-Oss^{(R)}$ was placed on the defect, $Bio-Oss^{(R)}$ with periosteum covering has been incorporated into the newly formed bone from 2-week postoperatively. 3. When the periosteum was removed at the surgical procedure, invasion of connective tissue took place among the granules, and new bone formation was delayed compared to periosteum covering group. Therefore, when the bone grafting was performed with periosteal incision procedure to achieve tension-free suture, the integrity of the overlying periosteum should be maintained to avoid fibrous tissue ingrowth.

FACTORS INFLUENCING TO REGENERATION OF THE ALVEOLAR BONE IN THE SUPRAALVEOLAR DEFECTS IN DOGS;I : EFFECT OF THE DECALCIFIED FREEZE-DRIED BONE ALLOGRAFT (성견 수평골 소실시 치조골 재생에 영향을 주는 인자;I : 냉동 탈회 건조골 동종이식의 효과)

  • Kim, Chong-Kwan;Chai, Jung-Kiu;Cho, Kyoo-Sung;Choi, Seong-Ho;Jung, Hyun-Cheol;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.374-390
    • /
    • 1993
  • Regeneration of periodontal tissue after a loss of attachment due to disease or trauma repesents an important issue in dentistry, and various bone graft materials have been used to regenerated lost periodontal tissue and restore proper fuctions. Among those, allografts have been extensively researched and widely used clinically, since they are known to possess an excellent osteoinduction capability and result in proper topography of alveolar bone. Regeneration of periodontal tissue in supraalveolar defects may be technically difficult. However, a large amount of regeneration has been observed by complete tissue coverage of involved teeth. In this study, supraalveolar defects in adult dogs were treated with periodontal surgery, decalcified freez-dried bone allograft, complete tissue coverage was attained, and effects on repair and regeneration of alveolar bone, cementum and periodontal ligament were studied. Exposure of premolar furcation of adult dogs was attained by removing marginal alveolar bone down to 5mm from CEJ, and root surfaces were planed with curettes. On the left side, defects were treated without any allograft(Control Group). On the right side, a DFDB was used(Experimental Group). In all groups, flaps were coronally positioned and sutured, completely submerging the treated defects. At two weeks, the crown were exposed 2-3mm. Healing progresses were histologically observed after eight weeks and the results were as follows : 1. Distance from CEJ to AJE was : $2.82{\pm}0.66mm$ in the control group, $1.71{\pm}0.51mm$ in experimental group, with significant differences between groups.(P<0.01) 2. Periodontal repair was : $2.18{\pm}0.66mm$ in the control group, $3.29{\pm}0.51mm$ in experimental group, with significant differences between groups.(P<0.01) 3. Connective tissue repair was : $1.43{\pm}0.52mm$ in the control group, $0.76{\pm}0.47mm$ in experimental group, with significant differences between groups.(P<0.01) Orientation of connective tissue fibers in relation to root surfaces was : mostly parallel in the control group, vertical or parallel or irregular in experimental group. 4. The amount of cementum formation was : $1.66{\pm}0.58mm$ in the control group, $2.86{\pm}0.66mm$ in experimental group, with significant differences between groups. 5. The amount of alveolar bone formation was : $0.76{\pm}0.72mm$ in the control group, $2.53{\pm}0.56mm$ in experimental group, with significant differences between groups.(P<0.01)

  • PDF

The effect of human demineralized freeze-dried xenograft on vertical bone formation in beagle dogs (탈회동결건조골이 수직골 형성에 미치는 영향)

  • Park, Ju-Hee;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk;Shin, Seung-Il;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • Purpose: The purpose of this study was to evaluate exophytically vertical bone formation in the mandibular premolar area of beagle dogs by the concept of guided bone regeneration with a titanium reinforced e-PTFE membrane combined with human demineralized freeze-dried bone. Materials and Methods: Four one-year old beagle dogs were divided into control and experimental group. All mandibular premolars were extracted and surgical vertical defects of 5 mm in height were created in the extracted sockets. At 8 weeks after the extraction, TR e-PTFE membrane sized with 8 mm in length, 5 mm in width, and 4 mm in height was placed on the decorticated mandible, fixed with metal pins and covered with full-thickness flap and assigned as control group. In experimental group, decorticated mandibule was treated with TR e-PTFE membrane and human demineralized freeze-dried bone. The animals were sacrificed at 16 weeks after the regenerative surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. Results: Average of new bone formation was 38% in the control group, whereas was 25% in the experimental group (p<0.05). Average of connective tissue formation was 42% in the experimental group, whereas was 30% in the control group (p<0.05). The lamellar bone formation with haversian canals was observed in the both groups. In the experimental group, the particles of human demineralized freeze-dried bone were observed after 16 weeks and complete resorption of graft was not observed. Conclusion: On the basis of these findings, we conclude that titanium reinforced e-PTFE membrane may be used alone for vertical guided bone regeneration, but demineralized freeze-dried bone has no additional effect on vertical guided bone regeneration.

Effects of rhBMP-2 with various carriers on bone regeneration in rat calvarial defect (백서 두개골 결손에서 rhBMP-2와 다양한 carrier의 골재생 유도효과)

  • Lee, Seo-Kyoung;Kim, Ji-Sun;Kang, Eun-Jung;Eum, Tae-Kwan;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.125-134
    • /
    • 2008
  • Purpose: Bone morphogenetic protein (BMP) is a potent differentiating agent for cells of the osteoblastic lineage. It has been used in the oral cavity under a variety of indications and with different carriers. However, the optimal carrier for each indication is not known. This study evaluated the bone regenerative effect of rhBMP-2 delivered with different carrier systems. Materials and Methods: 8 mm critical-sized rat calvarial defects were used in 60 male Sprague-Dawley rats. The animals were divided into 6 groups containing 10 animals each. Two groups were controls that had no treatment and absorbable collagen membrane only. 4 groups were experimentals that contained rhBMP-2 only and applied with absorbable collagen sponge($Collatape^{(R)}$), $MBCP^{(R)}$, Bio-$Oss^{(R)}$ each. The histological and histometric parameters were used to evaluate the defects after 2- or 8-week healing period. The shape and total augmented area were stable in all groups over the healing time. Results: New bone formation was significantly greater in the rhBMP-2 with carrier group than control group. rhBMP-2/ACS was the highest in bone density but gained less new bone area than rhBMP-2/$MBCP^{(R)}$ and rhBMP-2/Bio-$Oss^{(R)}$. The bone density after 8 weeks was greater than that after 2 weeks in all groups. However, rhBMP-2 alone failed to show the statistically significant difference in new bone area and bone density compared to control group. Also $MBCP^{(R)}$ and Bio-$Oss^{(R)}$ particles remained after 8 weeks healing period. Conclusion: These results suggest that rhBMP-2 with carrier system is an excellent inductive agent for bone formation and we can use it as the predictable bone tissue engieering technique. Future study will likely focus on the kinetics of BMP release and development of carriers that is ideal for it.

Effect of protein transduction domain fused-bone morphogenetic protein-2 on bone regeneration in rat calvarial defects (단백질 전달 영역 융합-Bone Morphogenetic Protein-2가 백서 두개골 결손부에서 골 조직 재생에 미치는 효과)

  • Um, Yoo-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho;Chai, Jung-Kiu;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.153-162
    • /
    • 2008
  • Purpose: Recombining bone morphogenetic protein (BMP) is usually acquiredfrom high level animals. Though this method is effective, its high cost limits its use. The purpose of this study was to evaluate the effect of bone morphogenetic protein-2 with protein transduction domain (BMP-2/PTD;TATBMP-2) on bone regeneration. Rat calvarial defect model and osteoblastic differentiation model using MC3T3 cell were used for the purpose of the study. Materials and Methods: MC3T3 cells were cultured until they reached a confluence stage. The cells were treated with 0, 0.1, 1, 10, 100, 500 ng/ml of BMP-2/PTD for 21 days and at the end of the treatment, osteoblastic differentiation was evaluated usingvon Kossa staining. An 8mm, calvarial, critical-size osteotomy defect was created in each of 48 male Spraque-Dawley rats (weight $250{\sim}300\;g$). Three groups of 16 animals each received either BMP-2/PTD (0.05mg/ml) in a collagen carrier, collagen only, or negative surgical control. And each group was divided into 2 and 8 weeks healing intervals. The groups were evaluated by histologic analysis(8 animals/group/healing intervals) Result: In osteoblastic differentiation evaluation test, a stimulatory effect of BMP-2/PTD was observed in 10ng/ml of BMP-2/PTD with no observation of dose-dependent manner. The BMP-2/PTD group showed enhanced local bone formation in the rat calvarial defect at 2 weeks. New bone was observed at the defect margin and central area of the defect. However, new bone formation was observed only in 50% of animals used for 2weeks. In addition, there was no new bone formation observed at 8 weeks. Conclusion: The results of the present study indicated that BMP-2/PTD(TATBMP-2) have an positive effect on the bone formation in vitro and in vivo. However, further study should be conducted for the reproducibility of the outcomes.

The effect of polyphosphate on exophytic bone formation (무기인산염이 외방성 수직골 형성에 미치는 영향)

  • Lee, Jean;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • Purpose: It has been shown that the inorganic polyphosphate is effective for the regeneration of bones through the preliminary animal test of rabbits. The most effective concentration of the polyphosphate, however, is not known yet. Moreover, the effectiveness of carriers inside human body is not confirmed.. Materials and Methods: In this study, we examined the effect of the concentration of the inorganic polyphosphate on the process of the bone regeneration using the 6 weeks old rabbits with the weight of 2.0 kg in average. We performed the experiment using TR-ePTFE membrane(membrane) filled with collagen immersed in 4%, 8% of inorganic polyphosphate, respectively, following removal of the proper sized cortical bones from the rabbit calvaria. The experimental results were compared with the one of the following four groups: The negative control group for membrane only, the positive control group for membrane filled with collagen, the first experimental group for membrane filled with collagen immersed in 4% of inorganic polyphosphate, and the second experimental group for membrane filled with collagen immerse in 8% of inorganic polyphosphate. The fragments of the tissue with membrane obtained from each group of the sacrificed rabbits for 8 or 16 weeks sustained after surgery were then prestained by the Hematoxylin-Eosin stain and coated by resin to form non-decalcified specimens for the histologic examination and analysis. New bone formation was assessed by histomorphometric and statistical analysis. Results: 1. All groups have shown better bone regeneration at 16weeks than 8weeks. 2. Negative control group has shown more bone regeneration relative to the other groups at 8 and 16 weeks. 3. All experimental groups have shown better bone regeneration relative to positive control group. 4. At 16 weeks, the first experimental group has shown more bone regeneration compared to the second experimental group. Exophytic bone formation is not good at the first and the second experimental groups compared with negative control group. But, the use of 4% inorganic polyphosphate was more effective to bone formation than the use of 8% inorganic polyphosphate. Conclusion: With above results, it is suggested the use of inorganic polyphosphate with vehicle under TR-ePTFE membrane.

Relationship between the facial bone thickness and gingival biotype of the anterior maxilla in Koreans (한국인의 상악 전치부 순측골 두께와 치은 생체형(gingival biotype)의 상관관계)

  • Park, Ji-Hun;Kim, Yeun-Kang;Kim, Hyoung-Min;Joo, Ji-Young;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.3
    • /
    • pp.169-177
    • /
    • 2015
  • Purpose: The objects of this study were to examine the thickness of labial plate of anterior maxillary teeth and the gingival biotype in Koreans and to evaluate whether there is a correlation between the gingival biotype and the thickness of labial plate. Materials and Methods: This study was performed on 335 teeth of 57 subjects at the Pusan National University Dental Hospital. Cone Beam Computed Tomography (CBCT) was used to measure the thickness of labial plate at 4 mm, 6 mm, 8 mm from the cementoenamel junction and the gingival biotype was determined by the visibility of periodontal probe. Results: Thin facial bone less than 1 mm was observed in 87% at 4 mm, 88% at 6 mm and 90% at 8 mm. In 21% of total objects, thin gingival biotype was observed. There is no correlation between the thickness of labial plate and gingival biotype. Conclusion: Additional thorough radiographic examination such as CBCT was mandatory for aesthetic dental implant in the anterior dentition besides clinical oral examination.

A comparative study of the clinical effects of Fibrin adhesive and Calcium sulfate barrier in the treatment of mandibular class II furcations using Xenograft (하악 2급 이개부 병변에서 이종골 이식시 Fibrin adhesive와 Calcium sulfate barrier의 사용에 타른 임상적 효과에 대한 비교 연구)

  • Kwak, Seung-Ho;Chung, Chin-Hyung;Lim, Sung-Bin;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.515-529
    • /
    • 2006
  • Periodontal regeneration refers to the restoration of bone, cementum and periodontal ligament to their original levels before damage from periodontal disease process. Various surgical techniques to the promotion of periodontal regeneration have been used. Bone graft and guided tissue regeneration have used for the regeneration of furcation involvements which caused by periodontal disease. Fibrin adhesive is agents that have been shown to be effective in periodontal regeneration and biological carrier. Calcium sulfate which is one of the resorbable barrier materials has used for guided tissue regeneration. The purpose of this study was to compare the clinical effects between bone graft using fibrin adhesive and calcium sulfate barrier in the mandibular class II furcation involvement. For the study, twenty-six class II furcation involved teeth were surgically treated. 13 furcation defects(test group) were treated with bonegraft and fibrin adhesive and the others(control group) were treated with bone graft and calcium sulfate barrier. Pocket depth, clinical attachment level and gingival recession were measured at baseline, postoperative 3 and 6 months. The results of the study are as follows: 1. The change of pocket depth and clinical attachment level in both groups was decreased significantly at 3, 6 months than at baseline(p<0.05). 2. The change of gingival recession in both groups was increased significantly at 3, 6 months than at baseline(p<0.05). 3. The change of pocket depth and clinical attachment level in both groups was decreased at 3, 6 months, and the change of gingival recession in both groups was increased at 3, 6 months but there were no statistically or clinically significant differences with both groups. 4. The significant reduction of the pocket depth and clinical attachment level exhibited marked changes at 3 months in both groups. In conclusion, the results of this study suggest that there are no statistically or clinically significant differences between fibrin adhesive and calcium sulfate barrier in the treatment of class II furcations using xenograft.

A study on the safety and efficacy of bovine bone-derived bone graft material(OCS-B) (생체 유래 골 이식재(OCS-B)의 안전성 및 유효성에 관한 연구)

  • Park, Ho-Nam;Han, Sang-Hyuk;Kim, Kyoung-Hwa;Lee, Sang-Chul;Park, Yoon-Jeong;Lee, Sang-Hoon;Kim, Tae-Il;Seol, Yang-Jo;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.335-343
    • /
    • 2005
  • Inorganic bovine bone mineral has been widely researched as bone substitution materials in orthopedic and oral and maxillofacial application. OCS-B(NIBEC, Korea) is newly-developed inorganic bovine bone mineral. The aim of this study is to evaluate the safety and efficacy of bovine bone-derived bone graft material(OCS-B). Micro-structure of newly-developed inorganic bovine bone mineral(OCS-B) was analyzed by scanning electron microscope(SEM). Round cranial defects with eight mm diameter were made and filled with OCS-B in rabbits. OCS-B was inserted into femoral quadrant muscle in mouse. In scanning electron microscope, OCS-B was equal to natural hydroxyapatite. Rabbits were sacrificed at 2 weeks and 4 weeks after surgery and mice were sacrificed at 1 week and 2 weeks after surgery. Decalcified specimens were prepared and observed by microscope. In calvarial defects, osteoid and new bone were formed in the neighborhood of OCS-B at 2 weeks after surgery. And at 4 weeks after surgery osteoid and new bone bridge formed flourishingly. No inflammatory cells were seen on the surface of OCS-B at 1 week and 2 weeks in mouse experimental group. It is concluded that newly-developed inorganic bovine bone mineral(OCS-B) is a flourishing bone-forming material and biocompatible material.