• Title/Summary/Keyword: implant durability

Search Result 17, Processing Time 0.009 seconds

Clinical Durability and Deflation of Saline-Filled Breast Implant in Breast Reconstruction (유방재건술에 사용된 식염수 보형물의 임상적 내구성과 누출)

  • Kim, Il-Kug;Lee, Jun-Ho;Kim, Yong-Ha;Kim, Tae-Gon;Lee, Soo-Jung;Kang, Soo-Hwan
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.808-814
    • /
    • 2011
  • Purpose: Despite wide clinical use of breast implants, there is continued concern about the lifespan of these devices. The causes of explantation were infection, deflation of implant and patient's want. The deflation of saline-filled breast implant was related to strength and durability of implant shell. The purpose of this study is to evaluate the clinical durability of saline-filled breast implant through the analysis of duration until deflation occurred, causes, incidence and influencing factors. Methods: Retrospective analyses were conducted on clinical records for 19 cases of deflation of saline-filled breast implant from 201 cases of breast reconstruction with saline-filled implant between May 1995 and June 2011. The authors had been analyzed the causes of deflation, survival duration, symptom, sign, nipple excision, volume of implant, saline filling, method of reoperation, breast cancer stage and combined capsular contracture. Results: The causes of deflation were attributed to the cases that cannot be evaluated the causes in 15 cases, fall down in 1 case, mammography in 2 cases, accidental needle injury in 1 case. Mean survival duration was 4 years and 5 months. The duration of survival was less than 1 year for 5 cases, 1 year to 10 years for 10 cases, more than 10 years for 4 cases. The volume between 201 and 250 cc of deflated breast implant was rated as high by 14.0 percent. The deflation rate of underfilled implants was 11.4 percent, adequate filled implants was 9.3 percent. None of overfilled implant was deflated. The deflation of smooth surface implant was 5 of 152 cases. Textured implant was 14 of 49 cases. The capsular contracture of non-deflated breast implant was 28 of 182 cases and that of deflated breast implant was 6 of 19 cases. Conclusion: The patients who underwent saline-filled breast implant implantation should be informed that their implant could deflate. The analysis of clinical durability and causes of deflation in breast implant was important for the prediction and prevention of reopeation. The authors could suppose the causes of deflation of saline-filled breast implant through history, duration of survival, inspection of the shell of implant.

Awareness of periodontal diseases and implant management among implant wearers (임플란트 보유자의 치주질환 및 임플란트 관리에 대한 인식)

  • Kang, Boo-Wol;Lee, Sun-Mi
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.4
    • /
    • pp.759-770
    • /
    • 2012
  • Objectives : The purpose of this study was to examine the awareness of implant wearers about periodontal diseases and implant management, which were closely linked to implant durability, in an effort to obtain information on the right directions for oral health education related to implant self-care and specialized care. Methods : The subjects in this study were 217 patients who wore implant and visited 14 different dental hospitals and clinics in the metropolitan area. After a questioaire survey was conducted and collected data were analyed by the statistical package SPSS 18.0. Results : As for the awareness of the subjects on the regeneration of alveolar ridge by general characteristics, there were statistically significant intergroup gaps according to the number of possessed implant, implant satisfaction and subjective gingival health status(p<0.05). Regarding their awareness of implant durability by general characteristics, there were statistically significant gaps according to the number of possessed implant and oral health education experience(p<0.05). Concerning their awareness of the cycle of regular implant checkup by general characteristics, there were statistically significant gaps according to occupation, subjective gingival health status and oral health education experience(p<0.05). Conclusions : The above-mentioned findings suggest that in order to ensure the long-term safe maintenance of implant, the way of looking at periodontal diseases and implant management should be changed. Specifically, more intensive oral health education should be provided for implant wearers to be aware of the importance of self-care and specialized care to change their oral health behavior, and clinical dental hygienists should improve their role performance to make it happen.

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

Use of Acellular Biologic Matrix Envelope for Cardiac Implantable Electronic Device Placement to Correct Migration into Submuscular Breast Implant Pocket

  • Peyton Terry;Kenneth Bilchick;Chris A. Campbell
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.156-159
    • /
    • 2023
  • Breast implants whether used for cosmetic or reconstructive purposes can be placed in pockets either above or below the pectoralis major muscle, depending on clinical circumstances such as subcutaneous tissue volume, history of radiation, and patient preference. Likewise, cardiac implantable electronic devices (CIEDs) can be placed above or below the pectoralis major muscle. When a patient has both devices, knowledge of the pocket location is important for procedural planning and for durability of device placement and performance. Here, we report a patient who previously failed subcutaneous CIED placement due to incision manipulation with prior threatened device exposure requiring plane change to subpectoral pocket. Her course was complicated by submuscular migration of the CIED into her breast implant periprosthetic pocket. With subcutaneous plane change being inadvisable due to patient noncompliance, soft tissue support of subpectoral CIED placement with an acellular biologic matrix (ABM) was performed. Similar to soft tissue support used for breast implants, submuscular CIED neo-pocket creation with ABM was performed with durable CIED device positioning confirmed at 9 months postprocedure.

Energy-dispersive X-ray spectroscopic investigation of a fractured non-submerged dental implant associated with abutment fracture

  • Truc Thi Hoang Nguyen;Mi Young Eo;Kezia Rachellea Mustakim;Mi Hyun Seo;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The biocompatibility and durability of implant fixtures are major concerns for dentists and patients. Mechanical complications of the implant include abutment screw loosening, screw fracture, loss of implant prostheses, and implant fracture. This case report aims to describe management of a case of fixture damage that occurred after screw fracture in a tissue level, internal connection implant and microscopic evaluation of the fractured fixture. A trephine bur was used to remove the fixture, and the socket was grafted using allogeneic bone material. The failed implant was examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), which revealed a fractured fixture with both normal and irregular bone patterns. The SEM and EDS results give an enlightenment of the failed fixture surface micromorphology with microfracture and contaminated chemical compositions. Noticeably, the significantly high level of gold (Au) on the implant surface and the trace amounts of Au and titanium (Ti) in the bone tissue were recorded, which might have resulted from instability and micro-movement of the implant-abutment connection over an extended period of time. Further study with larger number of patient and different types of implants is needed for further conclusion.

Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis (티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

Is Restoration of Hip Center Mandatory for Total Hip Arthroplasty of Protrusio Acetabuli?

  • Beom Seok Lee;Hong Seok Kim;O Sang Kwon;Young-Kyun Lee;Yong-Chan Ha;Kyung-Hoi Koo
    • Hip & pelvis
    • /
    • v.34 no.2
    • /
    • pp.106-114
    • /
    • 2022
  • Purpose: While initial fixation using a press-fit of the acetabular cup is critical for the durability of the component, restoration of the hip center is regarded as an attributable factor for implant survival and successful outcome. In protrusio acetabuli (PA), obtaining both restoration of the hip center and the press-fit of the acetabular cup simultaneously might be difficult during total hip arthroplasty (THA). We tested the hypothesis that use of a medialized cup, if press-fitted, will not result in compromise of the implant stability and outcome after cementless THA of PA. Materials and Methods: A total of 26 cementless THAs of 22 patients with PA were reviewed. During THA, press-fit of the cup was prioritized rather than hip center restoration. A press-fit was obtained in 24 hips. A pressfit could not be obtained in the two remaining hips; therefore, reinforcement acetabular components were used. Restoration of the hip center was achieved in 17 cups; 15 primary cups and two reinforcement components; it was medialized in nine cups. Implant stability and modified Harris hip score (mHHS) between the two groups were compared at a mean follow-up of 5.1 years (range, 2-16 years). Results: Twenty-six cups; 17 restored cups and nine medialized press-fitted cups, remained stable at the latest follow-up. A similar final mHHS was observed between the restored group and the medialized group (83.6±12.1 vs 83.8±10.4, P=0.786). Conclusion: Implant stability and favorable results were obtained by press-fitted cups, irrespective of hip center restoration. THA in PA patients showed promising clinical and radiological results.

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

Medial Wall Orbital Reconstruction using Unsintered Hydroxyapatite Particles/Poly L-Lactide Composite Implants

  • Park, Hojin;Kim, Hyon-Surk;Lee, Byung-Il
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.3
    • /
    • pp.125-130
    • /
    • 2015
  • Background: Poly-L-lactide materials combined with hydroxyapatite (u-HA /PLLA) have been developed to overcome the drawbacks of absorbable materials, such as radiolucency and comparably less implant strength. This study was designed to evaluate the usefulness of u-HA/PLLA material in the repair of orbital medial wall defects. Methods: This study included 10 patients with pure medial wall blow-out fractures. The plain radiographs were taken preoperatively, immediately after, and 2 months after surgery. The computed tomography scans were performed preoperatively and 2 months after surgery. Patients were evaluated for ease of manipulation, implant immobility, rigidity and complications with radiologic studies. Results: None of the patients had postoperative complications, such as infection or enophthalmos. The u-HA/PLLA implants had adequate rigidity, durability, and stable position on follow-up radiographic studies. On average, implants were thawed 3.4 times and required 14 minutes of handling time. Conclusion: The u-HA/PLLA implants are safe and reliable for reconstruction of orbital medial wall in terms of rigidity, immobility, radiopacity, and cost-effectiveness. These thin yet rigid implants can be useful where wide periosteal dissection is difficult due to defect location or size. Since the u-HA/PLLA material is difficult to manipulate, these implants are not suitable for use in complex 3-dimensional defects.

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.