• 제목/요약/키워드: impinging water jet

검색결과 81건 처리시간 0.027초

The Effect of Ambient Air Condition on Heat Transfer of Hot Steel Plate Cooled by an Impinging Water Jet

  • Lee, Pil-Jong;Park, Hae-Won;Lee, Sung-Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.740-750
    • /
    • 2003
  • It has been observed that the cooling capacity of an impinging water jet is affected by the seasonal conditions in large-scale steel manufacturing processes. To confirm this phenomenon, cooling experiments utilizing a hot steel plate cooled by a laminar jet were conducted for two initial ambient air temperatures (10$^{\circ}C$ and 40$^{\circ}C$) in a closed chamber, performing an inverse heat conduction method for quantitative comparison. This study reveals that the cooling capacity at an air temperature of 10$^{\circ}C$ is lower than the heat extracted at 40$^{\circ}C$. The amount of total extracted heat at 10$^{\circ}C$ is 15% less than at 40$^{\circ}C$ , These results Indicate the quantity of water vapor, absorbed until saturation, affects the mechanism of boiling heat transfer.

경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구 (Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink)

  • 홍기호;송태호
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.

벽 충돌 제트로 생성되는 액막의 두께 분포 특성 연구 (A Study on the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet Onto a Wall)

  • 이진성;이태영;조정민;강보선
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.68-74
    • /
    • 2023
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a wall was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions for two impinging jets. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed some differences from the measurement results.

衝突水噴流 에 의한 熱傳達促進 에 관한 硏究 (Augmentation of Heat Transfer on a Flat Plate with Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.301-307
    • /
    • 1982
  • The purpose of this investigation is to study heat transfer characteristics at a stagnation point on a flat plate caused by upward impinging water jet. At the stagnation point, heat transfer results by impinging water jet are being compared with the ones with supplementary water. Optimum supplementary water quantity are supplied in order to improve the effect of heat transfer for each nozzle-to-plate distance. As the nozzle outlet velocity increases, the heat transfer coefficient at stagnation point consequently increases. Changing the nozzle-to-plate distance, growth rate of heat transfer also varies accordingly. This optimum range of Reynolds number is obtained to improve heat transfer effect.

사각(四角) 충돌수분류(衝突水噴流)의 열전달증진(熱傳達增進)에 관(關)한 연구(硏究) (A Study on Heat Transfer Augmentation in Rectangular Impinging Water Jet System)

  • 박성연;이종수;엄기호;서정민
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.42-50
    • /
    • 1991
  • The purpose of this study is an augmentation of heat transfer in the case of upward rectangular impinging water jet system. The variables of this study are nozzle-to-heated surface distance, jet velocity and supplementary water height. Optimum heights of supplementary water which augment the heat transfer rate are S/B=2 for H/B=30 and S/B=I for H/B=40, 50. On the Y-direction of nozzle, there exhibits the secondary peak of heat transfer coefficient when supplementary water is not used, however using the supplementary water, it does not exhibits. In the case of using supplementary water, heat transfer coefficient increases not only in stagnation region but also in wall jet region.

  • PDF

회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구 (Heat transfer characteristics between a rotating flat plate and an impinging water jet)

  • 전성택;이종수;최국광
    • 설비공학논문집
    • /
    • 제10권5호
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

충돌수분류계(衝突水噴流系)에서 와이어 메쉬를 사용(使用)한 열전달(熱傳達) 증진(增進)에 관(關)한 연구(硏究) (A Study on the Heat Transfer Augmentation by Using Wire-mesh Impinging Water Jet)

  • 나기대
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.291-301
    • /
    • 1994
  • This paper presents the promotion of heat transfer through the use of wire-mesh screens. To improve heat transfer in an impingement water system, the wire-mesh screens are installed between the nozzle-to-heater surfaces. When the wire-mesh screens are not employed, this report exhibits the maximum heat transfer and the secondary maximum value at the stagnation point. But in case of using the wire-mesh screens, the transfer coefficient value of maximum heat exists at the stagnation point, and the second maximum value doesn't occur. Therefore, the heat transfer is more improved than 4~6 times that of the mean Nusselt numbers of simple water jet system, Also, within the region presented in this study, the heat transfer was promoted by using the wire-mesh screens at the stagnation point ; thus, the heat transfer was more increased than 6-7. 5 times that of simple water jet system.

  • PDF

냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구 (Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet)

  • 이정호;유청환;도규형
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.

셀 표면의 충돌제트를 이용한 태양광발전 시스템 효율향상에 관한 연구 (Improving the effectiveness of a photovoltaic system by water impinging jet on the surface of photovoltaic cells)

  • 유상필;진주석;김혁균;김이현;정성대;서용석;정남조
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.241-244
    • /
    • 2009
  • This study is focused on the improving effectiveness of a photovoltaic system. The characteristic of crystalline silicon solar cells, that 0.5% reduction in generating power is occurred by increasing temperature $1^{\circ}C$ of module. Typically, average solar generating power is higher spring and fall than summer. Degradation phenomena shall shorten the life of the module when the temperature of modules is $70^{\circ}C$. Decreasing temperature 40degree of the module and increasing the solar power 20% was presented using the water impinging jet method on the surface of photovoltaic cells. It is shown that Impinging jet have an effected on heat and deliver effective substance from the area in which the injection is effective.

  • PDF

주변공기조건이 충돌수분류에 의한 고온강판의 냉각에 미치는 영향 연구 (The Effect of Ambient Air Condition on a Hot Steel Plate Cooled by Impinging Water Jet)

  • 이필종;최해원;이승홍
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.29-38
    • /
    • 2000
  • It is observed that the cooling capacity of impinging water jet is affected by the seasonal conditions in steel manufacturing process with large scale. To confirm this phenomena, the cooling experiments of a hot steel plate by a laminar jet were conducted for two different initial ambient air temperature($10^{\circ}C$ and $40^{\circ}C$) in a closed chamber, and an inverse heat conduction method is applied for the quantitative comparison. It is found that the cooling capacity under $10^{\circ}C$ air temperature is lower than that under $40^{\circ}C$, as is the saturated water vapor is more easily observed, and the amount of total extracted heat in the case of $10^{\circ}C$ is smaller by nearly 15% than that of $40^{\circ}C$ case. From these results, it is thought that the quantity of water vapor, which could be absorbed until saturation, effects on the mechanism of boiling heat transfer.